Fatal Ebola virus infection is characterized by a systemic inflammatory response similar to septic shock. Ebola glycoprotein (GP) is involved in this process through activating dendritic cells (DCs) and macrophages. However, the mechanism is unclear. Here, we showed that LSECtin (also known as CLEC4G) plays an important role in GP-mediated inflammatory responses in human DCs. Anti-LSECtin mAb engagement induced TNF-α and IL-6 production in DCs, whereas silencing of LSECtin abrogated this effect. Intriguingly, as a pathogen-derived ligand, Ebola GP could trigger TNF-α and IL-6 release by DCs through LSECtin. Mechanistic investigations revealed that LSECtin initiated signaling via association with a 12-kDa DNAX-activating protein (DAP12) and induced Syk activation. Mutation of key tyrosines in the DAP12 immunoreceptor tyrosine-based activation motif abrogated LSECtin-mediated signaling. Furthermore, Syk inhibitors significantly reduced the GP-triggered cytokine production in DCs. Therefore, our results demonstrate that LSECtin is required for the GP-induced inflammatory response, providing new insights into the EBOV-mediated inflammatory response.
Epithelial barrier disruption is a major cause of inflammatory bowel disease (IBD); however, the cellular and molecular regulation of intestinal epithelial homeostasis remains largely undefined. Here, we show that the C-type lectin receptor LSECtin (Clec4g) on macrophages is required for protection against dextran sulfate sodium-induced colitis. Mechanistically, LSECtin promotes apoptotic cell clearance by macrophages and induces the production of antiinflammatory/tissue repair factors in an engulfment-dependent manner, which in turn stimulates epithelial cell proliferation. Deletion of LSECtin results in defective engulfment by colon macrophages, leading to aberrant proresolving factor production and impaired intestinal epithelium repair. Collectively, our findings suggest that LSECtin-dependent corpse clearance by macrophages can direct intestinal regeneration and maintenance of the mucosal barrier after injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.