Newly emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus disease 2019 (COVID-19) pandemic has now spread across the globe in past few months while affecting 26 million people and leading to more than 0.85 million deaths as on 2nd September, 2020. Severity of SARS-CoV-2 infection increases in COVID-19 patients due to pre-existing health co-morbidities. This mini-review has focused on the three significant co-morbidities viz., heart disease, hypertension, and diabetes, which are posing high health concerns and increased mortality during this ongoing pandemic. The observed co-morbidities have been found to be associated with the increasing risk factors for SARS-CoV-2 infection and COVID-19 critical illness as well as to be associated positively with the worsening of the health condition of COVID-19 suffering individuals resulting in the high risk for mortality. SARS-CoV-2 enters host cell via angiotensin-converting enzyme 2 receptors. Regulation of crucial cardiovascular functions and metabolisms like blood pressure and sugar levels are being carried out by ACE2. This might be one of the reasons that contribute to the higher mortality in COVID-19 patients having co-morbidities. Clinical investigations have identified higher levels of creatinine, cardiac troponin I, alanine aminotransferase, NT-proBNP, creatine kinase, D-dimer, aspartate aminotransferase and lactate dehydrogenase in patients who have succumbed to death from COVID-19 as compared to recovered individuals. More investigations are required to identify the modes behind increased mortality in COVID-19 patients having co-morbidities of heart disease, hypertension, and diabetes. This will enable us to design and develop suitable therapeutic strategies for reducing the mortality. More attention and critical care need to be paid to such high risk patients suffering from co-morbidities during COVID-19 pandemic.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, known as coronavirus disease 2019 (COVID-19) causes cytokine release syndrome (CRS), leading to acute respiratory distress syndrome (ARDS), acute kidney and cardiac injury, liver dysfunction, and multiorgan failure. Although several studies have discussed the role of 5-lipoxygenase (5-LOX) in viral infections, such as influenzae and SARS, it remains unexplored in the pathophysiology of COVID-19. 5-LOX acts on free arachidonic acid (AA) to form proinflammatory leukotrienes (LTs). Of note, numerous cells involved with COVID-19 (e.g., inflammatory and smooth muscle cells, platelets, and vascular endothelium) widely express leukotriene receptors. Moreover, 5-LOX metabolites induce the release of cytokines (e.g., tumour necrosis factor-α [TNF-α], interleukin-1α , and interleukin-1β ) and express tissue factor on cell membranes and activate plasmin. Since macrophages, monocytes, neutrophils, and eosinophils can express lipoxygenases, activation of 5-LOX and the subsequent release of LTs may contribute to the severity of COVID-19. This review sheds light on the potential implications of 5-LOX in SARS-CoV-2-mediated infection and the anticipated therapeutic role of 5-LOX inhibitors.
Scrub typhus is caused by Orientia tsutsugamushi, transmitted through bites of infected chiggers (larval mites). During the coronavirus disease 2019 (COVID-19) pandemic, reports of co-infections with endemic pathogens are increasing around the world. Disease with similar clinical presentation may mask other disease diagnosis and increase the morbidity and mortality of the patients. We report co-infection between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and O. tsutsugamushi in a patient in Nepal presenting with fever, headache, retro-orbital pain, generalized body ache, and knee joints pain with a history of dry cough and dyspnea at night. Since scrub typhus is prevalent and considerate as one of the public health consents in Asian countries and the possible overlapping clinical manifestation with other infections including COVID-19, a further investigation required to determine the burden of SARS-CoV-2 and O. tsutsugamushi co-infection in scrub typhus-endemic countries in Asia.
Tuberculosis is an infectious disease caused by the Mycobacterium tuberculosis. It is a global health problem and major cause of death in resource-limited countries like Nepal. Timely diagnosis with sensitive testing methods could assist in early management of the disease. This study was conducted to compare the diagnostic performance of GeneXpert MTB/RIF and conventional acid-fast staining with M. tuberculosis culture. The study was carried out in the Department of Microbiology, Shree Birendra Army Hospital, Nepal. Samples (n=500) were tested with a GeneXpert MTB/RIF assay and acid-fast bacilli (AFB) smear microscopy. All samples were sent for M. tuberculosis conventional culture by the German-Nepal Tuberculosis Project, Kathmandu, Nepal (GENETUP). Out of a total 500 pulmonary and extrapulmonary samples tested, 97 samples were positive for M. tuberculosis by GeneXpert MTB/RIF assay. Out of the positive samples, only 95 samples were found positive by the culture method. The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of AFB microscopy was 45.3%, 99.5%, 99.5% and 88.5%, respectively. The sensitivity, specificity, PPV and NPV of GeneXpert MTB/RIF was found to be 100%, 99.5%, 97.5% and 100%, respectively compared to the gold standard culture method. The GeneXpert MTB/RIF test was comparable with culture diagnosis of both pulmonary and extrapulmonary tuberculosis cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.