In this report, we proposed and simulated a new planar nonlinear rectifying device fabricated using InGaAs substrate and referred to as a planar barrier diode (PBD). Using an asymmetrical inverse-arrowhead-shaped structure between the electrodes, a nonuniform depletion region is developed, which creates a triangular energy barrier in the conducting channel. This barrier is voltage dependent and can be controlled by the applied voltage across the PBD, thus resulting in nonlinear diode-like current-voltage characteristics; thus it can be used as a rectifying device. The PBD's working principle is explained using thermionic emission theory. Furthermore, by varying the PBD's geometric design, the asymmetry of the current-voltage characteristics can be optimized to realize superior rectification performance. By employing the optimized structural parameters, the obtained cut-off frequency of the device was approximately 270 GHz with a curvature coefficient peak of 14 V %1 at a low DC bias voltage of 50 mV.
Recently, simulations of In0.48Ga0.52As-based Planar Barrier Diode (PBD) and Self-Switching Device (SSD) as millimeter-wave rectifiers were reported. Both PBD and SSD have a planar structure, but with different insulating shapes and working principles. In this work, a hybrid structure of the reported PBD and SSD in a parallel configuration is proposed, to exploit the advantages of each device. The advantages of high rectifying properties in the SSD and fast switching rate of the PBD are combined in this hybrid structure in order to obtain an improved rectification performance at zero-bias in the near terahertz frequency region. Analysis of the curvature co-efficient, γ, which is defined as the ratio of the second order to the first order derivative of the device’s I-V function was performed to evaluate the rectification performance. AC transient analyses were then executed in various frequencies to imitate the high-frequency signal inputs. By using this hybrid structure, the highest value of γ achieved has been improved to ~19 V-1 at 70 mV, and ~6 V-1 at zero-bias (compared to the previous results on PBDs). The estimated cut-off frequency obtained was ~360 GHz (0.36 THz), operating at zero-bias.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.