BackgroundCurrent normalization methods for RNA-sequencing data allow either for intersample comparison to identify differentially expressed (DE) genes or for intrasample comparison for the discovery and validation of gene signatures. Most studies on optimization of normalization methods typically use simulated data to validate methodologies. We describe a new method, GeTMM, which allows for both inter- and intrasample analyses with the same normalized data set. We used actual (i.e. not simulated) RNA-seq data from 263 colon cancers (no biological replicates) and used the same read count data to compare GeTMM with the most commonly used normalization methods (i.e. TMM (used by edgeR), RLE (used by DESeq2) and TPM) with respect to distributions, effect of RNA quality, subtype-classification, recurrence score, recall of DE genes and correlation to RT-qPCR data.ResultsWe observed a clear benefit for GeTMM and TPM with regard to intrasample comparison while GeTMM performed similar to TMM and RLE normalized data in intersample comparisons. Regarding DE genes, recall was found comparable among the normalization methods, while GeTMM showed the lowest number of false-positive DE genes. Remarkably, we observed limited detrimental effects in samples with low RNA quality.ConclusionsWe show that GeTMM outperforms established methods with regard to intrasample comparison while performing equivalent with regard to intersample normalization using the same normalized data. These combined properties enhance the general usefulness of RNA-seq but also the comparability to the many array-based gene expression data in the public domain.Electronic supplementary materialThe online version of this article (10.1186/s12859-018-2246-7) contains supplementary material, which is available to authorized users.
Although anti-EGFR therapy has established efficacy in metastatic colorectal cancer, only 10-20% of unselected patients respond. This is partly due to KRAS and BRAF mutations, which are currently assessed in the primary tumor. To improve patient selection, assessing mutation status in circulating tumor cells (CTCs), which possibly better represent metastases than the primary tumor, could be advantageous. We investigated the feasibility of KRAS and BRAF mutation detection in colorectal CTCs by comparing three sensitive methods and compared mutation status in matching primary tumor, liver metastasis and CTCs. CTCs were isolated from blood drawn from 49 patients before liver resection using CellSearch TM . DNA and RNA was isolated from primary tumors, metastases and CTCs. Mutations were assessed by co-amplification at lower denaturation temperature-PCR (Transgenomic TM ), real-time PCR (EntroGen TM ) and nested Allele-Specific Blocker (ASB-)PCR and confirmed by Sanger sequencing. In 43 of the 49 patients, tissue RNA and DNA was of sufficient quantity and quality. In these 43 patients, discordance between primary and metastatic tumor was 23% for KRAS and 7% for BRAF mutations. RNA and DNA from CTCs was available from 42 of the 43 patients, in which ASB-PCR was able to detect the most mutations. Inconclusive results in patients with low CTC counts limited the interpretation of discrepancies between tissue and CTCs. Determination of KRAS and BRAF mutations in CTCs is challenging but feasible. Of the tested methods, nested ASB-PCR, enabling detection of KRAS and BRAF mutations in patients with as little as two CTCs, seems to be superior.
BackgroundData from patients with colorectal liver metastases (CRLM) who received neoadjuvant chemotherapy before resection were reviewed and evaluated to see whether neoadjuvant chemotherapy influences the predictive outcome of R1 resections (margin is 0 mm) in patients with CRLM.MethodsBetween January 2000 and December 2008, all consecutive patients undergoing liver resection for CRLM were analyzed. Patients were divided into those who did and did not receive neoadjuvant chemotherapy. The outcome after R0 (tumor-free margin >0 mm) and R1 (tumor-free margin 0 mm) resection was compared.ResultsA total of 264 were eligible for analysis. Median follow-up was 34 months. Patients without chemotherapy showed a significant difference in median disease-free survival (DFS) after R0 or R1 resection: 17 [95% confidence interval (CI) 10–24] months versus 8 (95% CI 4–12) months (P < 0.001), whereas in patients with neoadjuvant chemotherapy the difference in DFS between R0 and R1 resection was not significant: 18 (95% CI 10–26) months versus 9 (95% CI 0–20) months (P = 0.303). Patients without chemotherapy showed a significant difference in median overall survival (OS) after R0 or R1 resection: 53 (95% CI 40–66) months versus 30 (95% CI 13–47) months (P < 0.001). In patients with neoadjuvant chemotherapy, the median OS showed no significant difference: 65 (95% CI 39–92) months for the R0 group versus the R1 group, in whom the median OS was not reached (P = 0.645).ConclusionsIn patients treated with neoadjuvant chemotherapy, R1 resection was of no predictive value for DFS and OS.
Genomic rearrangements that give rise to oncogenic gene fusions can offer actionable targets for cancer therapy. Here we present a systematic analysis of oncogenic gene fusions among a clinically well-characterized, prospectively collected set of 278 primary colon cancers spanning diverse tumor stages and clinical outcomes. Gene fusions and somatic genetic variations were identified in fresh frozen clinical specimens by Illumina RNA-sequencing, the STAR fusion gene detection pipeline, and GATK RNA-seq variant calling. We considered gene fusions to be pathogenically relevant when recurrent, producing divergent gene expression (outlier analysis), or as functionally important (e.g., kinase fusions). Overall, 2.5% of all specimens were defined as harboring a relevant gene fusion (kinase fusions 1.8%). Novel configurations of , and gene fusions resulting from chromosomal translocations were identified. An R-spondin fusion was found in only one tumor (0.35%), much less than an earlier reported frequency of 10% in colorectal cancers. We also found a novel fusion involving USP9X-ERAS formed by chromothripsis and leading to high expression of ERAS, a constitutively active RAS protein normally expressed only in embryonic stem cells. This USP9X-ERAS fusion appeared highly oncogenic on the basis of its ability to activate AKT signaling. Oncogenic fusions were identified only in lymph node-negative tumors that lacked BRAF or KRAS mutations. In summary, we identified several novel oncogenic gene fusions in colorectal cancer that may drive malignant development and offer new targets for personalized therapy. .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.