Bioconjugates with receptor-mediated tumor-targeting functions and carrying cytotoxic agents should enable the specific delivery of chemotherapeutics to malignant tissues, thus increasing their local efficacy while limiting the peripheral toxicity. In the present study, gonadotropin-releasing hormone III (GnRH-III; Glp-His-Trp-Ser-His-Asp-Trp-Lys-Pro-Gly-NH(2)) was employed as a targeting moiety to which daunorubicin was attached via oxime bond, either directly or by insertion of a GFLG or YRRL tetrapeptide spacer. The in vitro antitumor activity of the bioconjugates was determined on MCF-7 human breast and HT-29 human colon cancer cells by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Their degradation/stability (1) in human serum, (2) in the presence of cathepsin B and (3) in rat liver lysosomal homogenate was analyzed by liquid chromatography in combination with mass spectrometry. The results show that (1) all synthesized bioconjugates have in vitro antitumor effect, (2) they are stable in human serum at least for 24 h, except for the compound containing an YRRL spacer and (3) they are hydrolyzed by cathepsin B and in the lysosomal homogenate. To investigate the relationship between the in vitro antitumor activity and the structure of the bioconjugates, the smallest metabolites produced in the lysosomal homogenate were synthesized and their binding to DNA was assessed by fluorescence spectroscopy. Our data indicate that the incorporation of a peptide spacer in the structure of oxime bond-linked daunorubicin-GnRH-III bioconjugates is not required for their antitumor activity. Moreover, the antitumor activity is influenced by the structure of the metabolites (daunorubicin-amino acid derivatives) and their DNA-binding properties.
Bacterial degradation of steroids is widespread, but the metabolic pathways have rarely been explored. Previous studies with Pseudomonas sp. strain Chol1 and the C 24 steroid cholate have shown that cholate degradation proceeds via oxidation of the A ring, followed by cleavage of the C 5 acyl side chain attached to C-17, with 7␣,12-dihydroxy-androsta-1,4-diene-3,17-dione (12-DHADD) as the product. In this study, the pathway for degradation of the acyl side chain of cholate was investigated in vitro with cell extracts of strain Chol1. For this, intermediates of cholate degradation were produced with mutants of strain Chol1 and submitted to enzymatic assays containing coenzyme A (CoA), ATP, and NAD ؉ as cosubstrates. When the C 24 steroid (22E)-7␣,12␣-dihydroxy-3-oxochola-1,4,22-triene-24-oate (DHOCTO) was used as the substrate, it was completely transformed to 12␣-DHADD and 7␣-hydroxy-androsta-1,4-diene-3,12,17-trione (HADT) as end products, indicating complete removal of the acyl side chain. The same products were formed with the C 22 steroid 7␣,12␣-dihydroxy-3-oxopregna-1,4-diene-20-carboxylate (DHOPDC) as the substrate. The 12-keto compound HADT was transformed into 12-DHADD in an NADPH-dependent reaction. When NAD ؉ was omitted from assays with DHOCTO, a new product, identified as 7␣,12␣-dihydroxy-3-oxopregna-1,4-diene-20S-carbaldehyde (DHOPDCA), was formed. This aldehyde was transformed to DHOPDC and DHOPDC-CoA in the presence of NAD ؉ , CoA, and ATP. These results revealed that degradation of the C 5 acyl side chain of cholate does not proceed via classical -oxidation but via a free aldehyde that is oxidized to the corresponding acid. The reaction leading to the aldehyde is presumably catalyzed by an aldolase encoded by the gene skt, which was previously predicted to be a -ketothiolase.
SummaryThe distribution and the metabolic pathways of bacteria degrading steroid compounds released by eukaryotic organisms were investigated using the bile salt cholate as model substrate. Cholatedegrading bacteria could be readily isolated from freshwater environments. All isolated strains transiently released steroid degradation intermediates into culture supernatants before their further degradation. Cholate degradation could be initiated via two different reaction sequences. Most strains degraded cholate via a reaction sequence known from the model organism Pseudomonas sp. strain Chol1 releasing intermediates with a 3-keto-Δ 1,4 -diene structure of the steroid skeleton. The actinobacterium Dietzia sp. strain Chol2 degraded cholate via a different and yet unexplored reaction sequence releasing intermediates with a 3-keto-Δ 4,6 -diene-7-deoxy structure of the steroid skeleton such as 3,12-dioxo-4,6-choldienoic acid (DOCDA). Using DOCDA as substrate, two Alphaproteobacteria, strains Chol10-11, were isolated that produced the same cholate degradation intermediates as strain Chol2. With DOCDA as substrate for Pseudomonas sp. strain Chol1 only the side chain was degraded while the ring system was transformed into novel steroid compounds accumulating as dead-end metabolites. These metabolites could be degraded by the DOCDA-producing strains Chol10-11. These results indicate that bacteria with potentially different pathways for cholate degradation coexist in natural habitats and may interact via interspecies cross-feeding.
Background: Research on medicinal plants and extracts derived from them differs from studies performed with single compounds. Extracts obtained from plants, algae, fungi, lichens or animals pose some unique challenges: they are multicomponent mixtures of active, partially active and inactive substances, and the activity is often not exerted on a single target. Their composition varies depending on the method of preparation and the plant materials used. This complexity and variability impact the reproducibility and interpretation of pharmacological, toxicological and clinical research.Objectives: This project develops best practice guidelines to ensure reproducibility and accurate interpretations of studies using medicinal plant extracts. The focus is on herbal extracts used in pharmacological, toxicological, and clinical/intervention research. Specifically, the consensus-based statement focuses on defining requirements for: 1) Describing the plant material/herbal substances, herbal extracts and herbal medicinal products used in these studies, and 2) Conducting and reporting the phytochemical analysis of the plant extracts used in these studies in a reproducible and transparent way.The process and methods: We developed the guidelines through the following process: 1) The distinction between the three main types of extracts (extract types A, B, and C), initially conceptualised by the lead author (MH), led the development of the project as such; 2) A survey among researchers of medicinal plants to gather global perspectives, opportunities, and overarching challenges faced in characterising medicinal plant extracts under different laboratory infrastructures. The survey responses were central to developing the guidelines and were reviewed by the core group; 3) A core group of 9 experts met monthly to develop the guidelines through a Delphi process; and. 4) The final draft guidelines, endorsed by the core group, were also distributed for feedback and approval to an extended advisory group of 20 experts, including many journal editors.Outcome: The primary outcome is the “Consensus statement on the Phytochemical Characterisation of Medicinal Plant extracts“ (ConPhyMP) which defines the best practice for reporting the starting plant materials and the chemical methods recommended for defining the chemical compositions of the plant extracts used in such studies. The checklist is intended to be an orientation for authors in medicinal plant research as well as peer reviewers and editors assessing such research for publication.
The variation in phytochemical constituents present in Rhodiola products available to European buyers via the internet and other sources is a major cause for concern. Adulteration with different species, and other sometimes unknown adulterants, appears to be commonplace. Good quality systems and manufacturing practices, including those required under the THMPD, enable consumers to have confidence that products are authentic and meet a high specification for quality and safety.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.