Cadmium chloride (CdCl2) is a widely used industrial compound that exhibits multiple organ toxicity. Cadmium is transported through blood where erythrocytes are exposed to its action. Here the effect of CdCl2 on human erythrocytes was examined under in vitro conditions. Human erythrocytes were treated with 0.01 - 0.5 mM CdCl2 for 24 h at 37 °C. Lysates were made from CdCl2 treated and untreated (control) cells and used for further analysis. CdCl2 treatment resulted in marked hemolysis of erythrocytes and oxidation of hemoglobin to methemoglobin. This will result in anemia and also reduce the oxygen carrying ability of erythrocytes. Hemoglobin oxidation was accompanied by degradation of heme and release of free ferrous iron moiety. Further analysis showed elevated lipid hydroperoxides and formation of advanced oxidation protein products along with reduction in total sulfhydryl content, indicating the generation of oxidative stress condition in the cell. Incubation of erythrocytes with CdCl2 enhanced generation of reactive oxygen and nitrogen species,decreased the antioxidant power and inhibited pathways of glucose metabolism. Plasma membrane was damaged as indicated by enhanced osmotic fragility and inhibition of membrane bound enzymes. This was confirmed by electron microscopy which showed formation of echinocytes. These results show that CdCl2 generates reactive species which impair the antioxidant system resulting in oxidative damage to erythrocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.