Dopamine cell death is the primary problem limiting the value of neurotransplantation in human patients with Parkinson's disease. To address this problem, we added glial cell line-derived neurotrophic factor (GDNF) to cultures of embryonic dopaminergic neurons obtained from human and from Bonnet monkey (Macaca radiata) in an effort to reduce apoptotic cell death and improve overall cell survival. Tissue from three human embryos, 7-8 weeks post-conception, and one 9-week post-conception monkey embryo were dissociated and cultured in F-12 media with 5% human placental serum. GDNF (10 ng/ml) in human cultures nearly doubled dopamine neuron survival and reduced the rate of apoptosis from 6% to 3%. In monkey cultures, GDNF also enhanced dopamine neuron survival and reduced the apoptotic rate. We conclude that GDNF improves the survival of primate embryonic dopamine neurons in culture by reducing apoptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.