Previously, we reported that nerve growth factor (NGF) is required to maintain herpes simplex virus (HSV) latency in cultures of rat sympathetic neurons (Wilcox and Johnson, 1987, 1988). Here, we extend these results by showing that NGF was also required to maintain HSV latency in cultures of sensory neurons obtained from dorsal root ganglia of rats, monkeys, and humans. The interruption of the neuronal supply of NGF for 1 hr reactivated HSV, indicating that the latent virus was exquisitely sensitive to perturbations in the concentration or binding of NGF. A species-specific monoclonal antibody directed against the human NGF-receptor, which blocks NGF binding, reactivated latent HSV in human, but not rat, sensory neurons. In contrast, a monoclonal antibody against the rat NGF-receptor, which binds the receptor without blocking NGF action, did not produce reactivation. These results indicate that the effects of NGF on HSV latency are mediated via NGF binding to the NGF receptor. In addition, treatments that interfere with specific steps in the transduction of the NGF signal, including treatment with 6-hydroxydopamine and colchicine, reactivated latent HSV. Further, in neurons harboring latent virus, interruption of protein synthesis or RNA transcription for 1 hr resulted in viral reactivation, suggesting that a short-lived factor may be present in neurons which represses viral reactivation.
Dopamine cell death is the primary problem limiting the value of neurotransplantation in human patients with Parkinson's disease. To address this problem, we added glial cell line-derived neurotrophic factor (GDNF) to cultures of embryonic dopaminergic neurons obtained from human and from Bonnet monkey (Macaca radiata) in an effort to reduce apoptotic cell death and improve overall cell survival. Tissue from three human embryos, 7-8 weeks post-conception, and one 9-week post-conception monkey embryo were dissociated and cultured in F-12 media with 5% human placental serum. GDNF (10 ng/ml) in human cultures nearly doubled dopamine neuron survival and reduced the rate of apoptosis from 6% to 3%. In monkey cultures, GDNF also enhanced dopamine neuron survival and reduced the apoptotic rate. We conclude that GDNF improves the survival of primate embryonic dopamine neurons in culture by reducing apoptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.