Blood pressure (BP) monitoring can be performed either invasively via arterial catheterization or non-invasively through a cuff sphygmomanometer. However, for conscious individuals, traditional cuff-based BP monitoring devices are often uncomfortable, intermittent, and impractical for frequent measurements. Continuous and non-invasive BP (NIBP) monitoring is currently gaining attention in the human health monitoring area due to its promising potentials in assessing the health status of an individual, enabled by machine learning (ML), for various purposes such as early prediction of disease and intervention treatment. This review presents the development of a non-invasive BP measuring tool called sphygmomanometer in brief, summarizes state-of-the-art NIBP sensors, and identifies extended works on continuous NIBP monitoring using commercial devices. Moreover, the NIBP predictive techniques including pulse arrival time, pulse transit time, pulse wave velocity, and ML are elaborated on the basis of bio-signals acquisition from these sensors. Additionally, the different BP values (systolic BP, diastolic BP, mean arterial pressure) of the various ML models adopted in several reported studies are compared in terms of the international validation standards developed by the Advancement of Medical Instrumentation (AAMI) and the British Hypertension Society (BHS) for clinically-approved BP monitors. Finally, several challenges and possible solutions for the implementation and realization of continuous NIBP technology are addressed.
Carbon–steel pipelines have mostly been utilized in the oil and gas (OG) industry owing to their strength and cost-effectiveness. However, the detection of corrosion under coating poses challenges for nondestructive (ND) pipeline monitoring techniques. One of the challenges is inaccessibility because of the pipeline structure, which leads to undetected corrosion, which possibly leads to catastrophic failure. The drawbacks of the existing ND methods for corrosion monitoring increase the need for novel frameworks in feature extraction, detection, and characterization of corrosion. This study begins with the explanations of the various types of corrosion in the carbon–steel pipeline in the OG industry and its prevention methods. A review of critical sensors integrated with various current ND corrosion monitoring systems is then presented. The importance of acoustic emission (AE) techniques over other ND methods is explained. AE data preprocessing methods are discussed. Several AE-based corrosion detection, prediction, and reliability assessment models for online pipeline condition monitoring are then highlighted. Finally, a discussion with future perspectives on corrosion monitoring followed by the significance and advantages of the emerging AE-based ND monitoring techniques is presented. The trends and identified issues are summarized with several recommendations for improvement in the OG industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.