Parkinson's disease (PD) is a neurodegenerative disorder which impairs motor skills, speech, and other functions such as behavior, mood, and cognitive processes. One of the most typical clinical hallmarks of PD is handwriting deterioration, usually the first manifestation of PD. The aim of this study is twofold: (a) to find a subset of handwriting features suitable for identifying subjects with PD and (b) to build a predictive model to efficiently diagnose PD. We collected handwriting samples from 37 medicated PD patients and 38 age- and sex-matched controls. The handwriting samples were collected during seven tasks such as writing a syllable, word, or sentence. Every sample was used to extract the handwriting measures. In addition to conventional kinematic and spatio-temporal handwriting measures, we also computed novel handwriting measures based on entropy, signal energy, and empirical mode decomposition of the handwriting signals. The selected features were fed to the support vector machine classifier with radial Gaussian kernel for automated diagnosis. The accuracy of the classification of PD was as high as 88.13%, with the highest values of sensitivity and specificity equal to 89.47% and 91.89%, respectively. Handwriting may be a valuable marker as a diagnostic and screening tool.
The objective of this paper is to present the state of-the-art relating to automatic speech and voice analysis techniques as applied to the monitoring of patients suffering from Alzheimer's disease as well as to shed light on possible future research topics. This work reviews more than 90 papers in the existing literature and focuses on the main feature extraction techniques and classification methods used. In order to guide researchers interested in working in this area, the most frequently used data repositories are also given. Likewise, it identifies the most clinically relevant results and the current lines developed in the field. Automatic speech analysis, within the Health 4.0 framework, offers the possibility of assessing these patients, without the need for a specific infrastructure, by means of non-invasive, fast and inexpensive techniques as a complement to the current diagnostic methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.