Parkinson's disease (PD) is a neurodegenerative disorder which impairs motor skills, speech, and other functions such as behavior, mood, and cognitive processes. One of the most typical clinical hallmarks of PD is handwriting deterioration, usually the first manifestation of PD. The aim of this study is twofold: (a) to find a subset of handwriting features suitable for identifying subjects with PD and (b) to build a predictive model to efficiently diagnose PD. We collected handwriting samples from 37 medicated PD patients and 38 age- and sex-matched controls. The handwriting samples were collected during seven tasks such as writing a syllable, word, or sentence. Every sample was used to extract the handwriting measures. In addition to conventional kinematic and spatio-temporal handwriting measures, we also computed novel handwriting measures based on entropy, signal energy, and empirical mode decomposition of the handwriting signals. The selected features were fed to the support vector machine classifier with radial Gaussian kernel for automated diagnosis. The accuracy of the classification of PD was as high as 88.13%, with the highest values of sensitivity and specificity equal to 89.47% and 91.89%, respectively. Handwriting may be a valuable marker as a diagnostic and screening tool.
Dysgraphia, a disorder affecting the written expression of symbols and words, negatively impacts the academic results of pupils as well as their overall well-being. The use of automated procedures can make dysgraphia testing available to larger populations, thereby facilitating early intervention for those who need it. In this paper, we employed a machine learning approach to identify handwriting deteriorated by dysgraphia. To achieve this goal, we collected a new handwriting dataset consisting of several handwriting tasks and extracted a broad range of features to capture different aspects of handwriting. These were fed to a machine learning algorithm to predict whether handwriting is affected by dysgraphia. We compared several machine learning algorithms and discovered that the best results were achieved by the adaptive boosting (AdaBoost) algorithm. The results show that machine learning can be used to detect dysgraphia with almost 80% accuracy, even when dealing with a heterogeneous set of subjects differing in age, sex and handedness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.