The design of the arms of industrial robots and manipulators is a demanding process both in terms of expertise and in terms of the time required. For these reasons, algorithms have been created, with the help of which it is possible to design cross-sections of individual arms of robots and manipulators not only from the point of view of maximum allowed deflection but also from the point of view of minimizing cross-sectional dimensions or minimizing the weight of arms. These algorithms were subsequently used in the development of the software tool RobotArmDesign, with the help of which it is possible to simplify and shorten the arm design process significantly. This tool also has a connection to the SolidWorks CAD system and its simulation tools through its API interface, making it possible to refine robot arms designs while maintaining significantly shorter design times than would be the case with commonly used procedures. This tool's capabilities were demonstrated in the design of a robot arm with an angular structure and five degrees of freedom.
Soft gripping, in which the gripper adapts to differently shaped objects, is in great demand for use in unknown or dynamically changing environments and is one of the main research subjects in soft robotics. Several systems have already been created, one of which is a passive shape-adaptable finger based on the FinRay effect. The geometric shape of this finger ensures that the finger wraps around the object it grips. FinRay fingers have been studied in several studies, which have changed the internal structure and examined how gripping force’s dependence on finger deformation changes. So far, however, no specific way has been determined to evaluate the proposed finger regarding its ability to wrap around the object. This work comes up with a new and simple method to evaluate the finger’s wrapping around the object mathematically. Based on this evaluation method, several different patterns of the internal structure of FinRay fingers were tested. The fingers were first tested in a simulation program, which simulated a steel roller indentation with a diameter of 20 mm in the middle of the finger’s contact surface. Based on the simulation results, selected types of structure were made by the Fused Filament Fabrication method from a flexible filament and tested on a real test rig to verify the results of the simulation and compare it with the real behaviour. According to the methodology used, the results show that the most suitable structure of the selected tested fingers from the point of view of wrapping the finger around the object is a structure without internal filling. Designers can simply use the new evaluation method to compare their designed finger variants and select the most suitable one according to the ability to wrap around the gripped object. They can also use graphs from this work’s results and determine the finger’s dimensions without internal filling according to the required forces and deflection.
The design and selection of a suitable drive unit for use in mechatronic systems is a process that can be demanding not only in terms of the time required but also in terms of the demands placed on the knowledge and experience of development workers. The development aimed to create algorithms for the selection of compact electric power units based on data from dynamic analyses of the proposed system, with the help of which it would be possible to shorten and simplify the drive unit selection process significantly. The result of the development is a software tool called DrivePicker. Its functions and benefits are demonstrated in the design of drive units for a robotic arm with an angular structure and 5 degrees of freedom. Comparing selected units from two manufacturers (Spinea DS and HarmonicDrive CanisDrive) shows that by using this software tool, we can significantly speed up and streamline the design of mechatronic devices. DrivePicker also has an interface for connection to simulation and CAD systems, which opens up the possibility of further autonomy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.