A new type of migrating zone boundary in electrophoresis is presented theoretically and evidenced experimentally. This type of the boundary (called hybrid boundary) shows simultaneously a steady-state part with self-sharpening properties and an unsteady-state part with time-dependent electromigration dispersion. It is shown that a sample zone may possess a hybrid boundary both as its front and rear one simultaneously. In such a case, the evolution of a sample zone injected originally as a rectangular pulse exhibits very complex transient shapes before it reaches the well-known fronting or tailing triangular shape. Depending on the stage at which detection of such a sample zone occurs, variable and peculiar-shape peaks may appear in the electropherogram. Based on theoretical predictions, experimental examples of the above-mentioned phenomena are presented in this contribution for direct and indirect UV absorbance detection of sample zones. Excellent agreement of theoretical predictions with the experiments has been found. The knowledge of hybrid boundaries is of key significance for correct interpretation of records of CE analyses in practice.
The methodology and instrumentation for fast denaturing electrophoresis in short capillaries was developed and exemplified by detection of short tandem repeat polymorphism in the endothelin 1 gene. The resolution of two nucleotides, which is required for the detection of a dinucleotide repeat polymorphism, was achieved in a capillary of an effective length of 2.5 cm at a temperature of 600C and an electric field strength of 600 V/cm in 42 s. Thus, the use of denaturing electrophoresis in short capillaries with laser-induced fluorescence detection resulted in a reduction of analysis time by a factor of 200 when compared to the conventional slab gel electrophoresis. The developed methodology and instrumentation is advantageous for an implementation in clinical diagnostics and genetic population screening where fast analytical instrumentation amenable to automation is of paramount importance.
Seven representatives of the serogroup B Staphylococcus aureus bacteriophages, 29, 53, 55, 83A, 85, phi 11 and 80 alpha, were examined by capillary electrophoresis (CE) for genomic homology using DNA restriction analysis. Genomic DNA of individual bacteriophages was cleaved by HindIII restriction endonuclease, and the resulting restriction fragments were separated by standard horizontal agarose slab gel electrophoresis (SGE) as well as by CE in low-melting-point agarose solutions. The number and size of restriction fragments identified by both methods were compared. The high separation power of CE makes it possible to extend the restriction fragment patterns. In most of the restriction patterns, some additional restriction fragments as small as 150 bp, not identified by SGE, were detected. With respect to speed, high separation efficiency, low sample consumption and automation, CE offers a simple procedure for processing of multiple samples cost-effectively in a reasonable time. The comparison of the complemented restriction patterns of the different phage strains and the subsequent identification of their common fragments leads to a deeper understanding of their phylogenetic relationships. The genome homologies expressed for individual phage pairs in terms of coefficient F values ranged from 15 to 69%. These values are in good accordance with the degree of DNA homology of these phages as determined by DNA hybridization studies and thermal denaturation analysis of DNA by other authors. The total size of each phage genome was estimated by adding the sizes of individual restriction fragments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.