Nerve agents pose a threat to the respiratory tract with exposure that could result in acute compromised lung performance and death. The determination of toxicity by inhalation is important for the rational development of timely therapeutic countermeasures. This study was designed to deliver aerosolized dilute nerve agents in a dose-response manner to investigate the extent of lethality of nerve agents: soman, sarin, VX and VR. Male rats (240-270 g) were anesthetized intramuscularly with 10 mg/kg xylazine and 90 mg/kg ketamine. Following anesthesia, rats were intubated with a glass endotracheal tube (ET) and placed in a glove box. The ET was connected to a closed circuit nebulizer system (Aeroneb, Aerogen, Inc.) that delivered a particle size of < 2.0 µm and was in series between the ventilator and the ET. Nerve agents were delivered by a small animal ventilator set for a volume of 2.5 mL × 60-80 breaths/min. VX or VR were nebulized and delivered in concentrations ranging from 6.25-800 µg/kg over a 10-min exposure time period. Sarin (GB) or soman (GD), 6.5-1250 µg/kg, were delivered in a similar manner. Lethality by inhalation occurred either during the 10-min exposure period or less than 15 min after the cessation of exposure. Survivors were euthanized at 24 h postexposure. LCt(50) estimates (± 95% confidence intervals [CIs]) were obtained from the sequential stage-wise experiments using the probit analysis. Probit analysis revealed that the LD(50) for VX was 110.7 µg/kg (CI: 73.5-166.7), VR 64.2 µg/kg (CI: 42.1-97.8); soman (GD), 167 µg/kg (CI: 90-310), and sarin (GB), 154 µg/kg (CI: 98-242), respectively. Although VR is a structural isomer of VX, the compounds appear to be markedly different in terms of toxicity when delivered by aerosol. These relationships were converted to actual 10 min LCt(50) equivalents: VX = 632.2, VR = 367, GD = 954.3 and GB = 880 mg·min/m(3). Validation of exposure was verified by the determination of blood levels of acetylcholinesterase (AChE) across doses for the agent VR.
The protective efficacy of the antimuscarinic agent scopolamine was evaluated against soman (o-pinacolyl methylphosphonofluoridate [GD])-induced respiratory toxicity in guinea pigs. Anesthetized animals were exposed to GD (841 mg/m(3)) by microinstillation inhalation exposure and treated 30 seconds later with endotracheally aerosolized scopolamine (0.25 mg/kg) and allowed to recover for 24 hours. Treatment with scopolamine significantly increased survival and reduced clinical signs of toxicity and body weight loss in GD-exposed animals. Analysis of bronchoalveolar lavage (BAL) fluid showed normalization of GD-induced increased cell death, total cell count, and protein following scopolamine treatment. The BAL fluid acetylcholinesterase and butyrylcholinesterase levels were also increased by scopolamine treatment. Respiratory dynamics parameters were normalized at 4 and 24 hours post-GD exposure in scopolamine-treated animals. Lung histology showed that scopolamine treatment reduced bronchial epithelial and subepithelial inflammation and multifocal alveolar septal edema. These results suggest that aerosolized scopolamine considerably protects against GD-induced respiratory toxicity.
We evaluated the efficacy of aerosolized acetylcholinesterase (AChE) reactivator oxime MMB-4 in combination with the anticholinergic atropine sulfate for protection against respiratory toxicity and lung injury following microinstillation inhalation exposure to nerve agent soman (GD) in guinea pigs. Anesthetized animals were exposed to GD (841 mg/m(3), 1.2 LCt(50)) and treated with endotracheally aerosolized MMB-4 (50 µmol/kg) plus atropine sulfate (0.25 mg/kg) at 30 sec post-exposure. Treatment with MMB-4 plus atropine increased survival to 100% compared to 38% in animals exposed to GD. Decreases in the pulse rate and blood O(2) saturation following exposure to GD returned to normal levels in the treatment group. The body-weight loss and lung edema was significantly reduced in the treatment group. Similarly, bronchoalveolar cell death was significantly reduced in the treatment group while GD-induced increase in total cell count was decreased consistently but was not significant. GD-induced increase in bronchoalveolar protein was diminished after treatment with MMB-4 plus atropine. Bronchoalveolar lavage AChE and BChE activity were significantly increased in animals treated with MMB-4 plus atropine at 24 h. Lung and diaphragm tissue also showed a significant increase in AChE activity in the treatment group. Treatment with MMB-4 plus atropine sulfate normalized various respiratory dynamics parameters including respiratory frequency, tidal volume, peak inspiratory and expiratory flow, time of inspiration and expiration, enhanced pause and pause post-exposure to GD. Collectively, these results suggest that aerosolization of MMB-4 plus atropine increased survival, decreased respiratory toxicity and lung injury following GD inhalation exposure.
Barometric whole-body plethysmography (WBP) was used to examine pulmonary functions at 4 and 24 hours postexposure to soman (GD) in guinea pigs without therapeutics to improve survival. Endotracheal aerosolization by microinstillation was used to administer GD (280, 561, and 841 mg/m(3)) or saline to anesthetized guinea pigs. Significant increases in respiratory frequency (RF), tidal volume (TV), and minute volume (MV) were observed with 841 mg/m(3) GD at 4 hours and that were reduced at 24 hours postexposure. A dose-dependent increase in peak inspiration flow and peak expiration flow was present at 4-hour post-GD exposure that was reduced at 24 hours. Time of inspiration and expiration were decreased in all doses of GD exposure at 4 and 24 hours, with significant inhibition at 841 mg/m(3). End-expiratory pause (EEP) increased at 280 and 561 mg/m(3), but decreased in animals exposed 841 mg/m(3) at 24 hours postexposure. Pseudo-lung resistance (Penh) and pause followed similar patterns and increased at 4 hours, but decreased at 24 hours postexposure to 841 mg/m(3) of GD compared to control. These studies indicate GD exposure induces dose-dependent changes in pulmonary function that are significant at 841 mg/m(3) at 4 hours and remains 24 hours postexposure. Furthermore, at 4 hours, GD induces bronchoconstriction possibly due to copious airway secretion and ongoing lung injury in addition to cholinergic effects, while at 24 hours GD induces bronchodilation a possible consequence of initial compensatory mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.