Water treated with low-temperature, low-pressure glow plasma (GP) in contact with air stimulates various microorganisms, the growth of various plants and provides healthy breeding of various animals. In this paper, we present water treated with GP under oxygen-free nitrogen. It is potentially suitable for breeding anaerobic microorganisms, and increasing the crops of plants utilizing atmospheric nitrogen. Deionized water saturated with oxygen-free nitrogen was treated for 5 to 90 min with low-temperature glow plasma (GP). That operation produced nitrogen in various exited states depending on the treatment time. These excited nitrogen molecules built aqueous clathrates around them. The number and structure of those clathrates depended on the time of the treatment with GP. In terms of mass, density, pH, conductivity, surface tension, Ultraviolet-Visible (UV-VIS), Fourier Transformation Infrared (FTIR), Raman and Electron Spin Resonance (ESR) spectra as well as Differential Scanning Calorimetry (DSC), the macrostructure of water saturated with nitrogen treated with GP strongly depended on the treatment time. Based on the entropy criterion, the macrostructure formed on 30 and 5 min treatment was the most and least organized, respectively.
Nanowater (NW; water declusterized in the low-temperature plasma reactor) has specific physicochemical properties that could increase semen viability after freezing and hence fertility after artificial insemination (AI) procedures. The main goal of this study was to evaluate ram semen quality after freezing in the media containing NW. Ejaculates from 10 rams were divided into two equal parts, diluted in a commercially available semen extender (Triladyl Õ ; MiniTü b GmbH, Tiefenbach, Germany) prepared with deionized water (DW) or NW, and then frozen in liquid nitrogen. Semen samples were examined for sperm motility and morphology using the sperm class analyzer system and light microscopy. Cryo-scanning electron microscopy (cryo-SEM) was employed to determine the size of extracellular water crystals in frozen semen samples. Survival time at room temperature, aspartate aminotransferase (AspAT) and alkaline phosphatase (ALP) concentrations post-thawing as well as conception/lambing rates after laparoscopic intrauterine AI of 120 ewes were also determined. There were no significant differences between DW and NW groups in sperm progressive motility (26.4 AE 12.2 and 30.8 AE 12.4%) or survival time (266.6 AE 61.3 and 270.9 AE 76.7 min) after thawing and no differences in the percentages of spermatozoa with various morphological defects before or after freezing. There were, however, differences (P < 0.05) in AspAT (DW: 187.1 AE 160.4 vs. NW: 152.7 AE 118.3 U/l) and ALP concentrations (DW: 2198.3 AE 1810.5 vs. NW: 1612.1 AE 1144.8 U/l) in semen samples post-thawing. Extracellular water crystals were larger (P < 0.05) in ejaculates frozen in NW-containing media. Ultrasonographic examinations on day 40 post-AI revealed higher (P < 0.05) conception rates in ewes inseminated with NW (78.3%) compared with DW semen (58.3%), and the percentages of ewes that carried lambs to term were 73.3% and 45.0% in NW and DW groups, respectively (P < 0.01). In summary, the use of a semen extender prepared with NW was associated with a substantial improvement in the fertilizing ability of frozen-thawed ram semen and lamb productivity of inseminated ewes.
The aim of this study is to determine the quality of water treated with low-temperature, low-pressure glow plasma, either in the air or under nitrogen, in order to obtain high-quality brewer's malt. To this end, plasma-treated spring water was used for barley grain soaking. In two-row spring barley grain, the procedure provided significantly higher water uptake capacity and grain sensitivity to water, as well as energy and germination capacity. The resulting malt showed improved moisture and 1000-grain mass. Furthermore, laboratory wort produced from the malt by the congress method did not differ statistically from a control sample in terms of filtration time, pH, turbidity, color, extract, free amino nitrogen compounds, and aromatic composition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.