The aim of this educational review is to provide practical information on the hardware, methodology, and the hands on application of chlorophyll (Chl) a fluorescence technology. We present the paper in a question and answer format like frequently asked questions. Although nearly all information on the application of Chl a fluorescence can be found in the literature, it is not always easily accessible. This paper is primarily aimed at scientists who have some experience with the application of Chl a fluorescence but are still in the process of discovering what it all means and how it can be used. Topics discussed are (among other things) the kind of information that can be obtained using different fluorescence techniques, the interpretation of Chl a fluorescence signals, specific applications of these techniques, and practical advice on different subjects, such as on the length of dark adaptation before measurement of the Chl a fluorescence transient. The paper also provides the physiological background for some of the applied procedures. It also serves as a source of reference for experienced scientists.
The physiological response of plants to triple foliar biofertilization with cyanobacteria and green algae under the conditions of limited use of chemical fertilizers was investigated. Triple foliar biofertilization with intact cells of Microcystis aeruginosa MKR 0105, Anabaena sp. PCC 7120, and Chlorella sp. significantly enhanced physiological performance and growth of plants fertilized with a synthetic fertilizer YaraMila Complex (1.0, 0.5, and 0.0 g per plant). This biofertilization increased the stability of cytomembranes, chlorophyll content, intensity of net photosynthesis, transpiration, stomatal conductance, and decreased intercellular CO2 concentration. Applied monocultures augmented the quantity of N, P, K in plants, the activity of enzymes, such as dehydrogenases, RNase, acid or alkaline phosphatase and nitrate reductase. They also improved the growth of willow plants. This study revealed that the applied nontoxic cyanobacteria and green algae monocultures have a very useful potential to increase production of willow, and needed doses of chemical fertilizers can be reduced.
Eutrophication of reservoirs used for drinking water supplies is a very common problem, particularly in lowland reservoirs. Long water retention time (60-120 days) favours cyanobacterial bloom occurrence in Sulejów Reservoir, Poland. The localisation of the water intake in a bay exposed to north-east winds favoured the Microcystis bloom accumulation, which formed a 0.5 m thick dense scum for the first time in September 1999. Cyanobacterial hepatotoxins can pose a potential health problem because the presence of about 0.8 μg/l microcystins was detected in drinking water during three series of analysis. An investigation of the efficiency of each stage of water treatment processes in the elimination of microcystins showed that pre-chlorination, coagulation, and rapid sand filtration were ineffective in removing microcystins from water. Significant elimination was observed after ozonation and chlorination. The concentration of microcystins in bloom material was between 12 to 860 μg/g dry weight of phytoplankton biomass. Management strategies for reservoirs should consider the important role of ecohydrological processes, which are often very easy to regulate, and which can be useful for bio-manipulation of the water ecosystem.
The aim of the research was to investigate the effect of biogas plant waste on the physiological activity, growth, and yield of Jerusalem artichoke and the energetic usefulness of the biomass obtained in this way after the torrefaction process. The use of waste from corn grain biodigestion to methane as a biofertilizer, used alone or supplemented with Apol-humus and Stymjod, caused increased the physiological activity, growth, and yield of Jerusalem artichoke plants and can limit the application of chemical fertilizers, whose production and use in agriculture is harmful for the environment. The experiment, using different equipment, exhibited the high potential of Jerusalem artichoke fertilized by the methods elaborated as a carbonized solid biofuel after the torrefaction process. The use of a special design of the batch reactor using nitrogen, Thermogravimetric analysis, Differential thermal analysis, and Fourier-transform infrared spectroscopy and combustion of Jerusalem artichoke using TG-MS showed a thermo-chemical conversion mass loss on a level of 30% with energy loss (torgas) on a level of 10%. Compared to research results on other energy crops and straw biomass, the isothermal temperature of 245 °C during torrefaction for the carbonized solid biofuel of Jerusalem artichoke biomass fertilized with biogas plant waste is relativlely low. An SEM-EDS analysis of ash from carbonized Jerusalem artichoke after torrefaction was performed after its combustion.
Large-scale Cyanobacteria and green algae production has been studied for decades, due to the wide variety of practical and potentially metabolic products that can be obtained such as food supplements, lipids, enzymes, biomass, polymers, toxins, pigments, tertiary wastewater treatment, and green energy products. Cyanobacteria are one of the major components of the potential source of nitrogen fixation and convert it into a bioavailable form of ammonium required for plant growth. These organisms have a unique potential to enhance productivity in a variety of agricultural and ecological situations and they play an important role in building up soil fertility, consequently increasing the yield. Biofertilizers, being essential components of organic farming, play a vital role in maintaining long-term soil fertility and sustainability by fixing atmospheric dinitrogen (N=N), mobilizing fixed macro and micro nutrients, or converting insoluble phosphorus in soil into forms available to plants, thereby increasing their efficiency and availability [1].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.