Miniaturized spectrometers have been widely researched in recent years, but few studies are conducted with on-chip multimode schemes for mode-division multiplexing (MDM) systems. Here we propose an ultracompact mode-division demultiplexing spectrometer that includes branched waveguide structures and graphene-based photodetectors, which realizes simultaneously spectral dispersing and light fields detecting. In the bandwidth of 1500-1600 nm, the designed spectrometer achieves the single-mode spectral resolution of 7 nm for each mode of TE 1 -TE 4 by Tikhonov regularization optimization. Empowered by deep learning algorithms, the 15-nm resolution of parallel reconstruction for TE 1 -TE 4 is achieved by a single-shot measurement. Moreover, by stacking the multimode response in TE 1 -TE 4 to the single spectra, the 3-nm spectral resolution is realized. This design reveals an effective solution for on-chip MDM spectroscopy, and may find applications in multimode sensing, interconnecting and processing.
The mode multiplexing/de-multiplexing devices are key components for mode-division multiplexing (MDM) technology. Here, we propose an ultra-compact and reconfigurable mode-conversion device via inverse design, which can selectively implement multichannel mode conversion controlled by input phase shifts (Δφ). The device can transform input TE0 (TE1) mode to TE4 (TE3) mode at Δφ=0, or from TE0 (TE1) to TE1 (TE2) at Δφ=π spanning the wavelength range of 1525–1565 nm. We further demonstrate an integrated monolithic module based on the mode conversions to directly demodulate the dual-mode difference phase shift keying (DPSK) signal which significantly reduces the device size and benefits for future dense integrations in MDM systems.
Plasmonic nanocavities offer prospects for the amplification of inherently weak nonlinear responses at subwavelength scales. However, constructing these nanocavities with tunable modal volumes and reduced optical losses remains an open challenge in the development of nonlinear nanophotonics. Herein, we design and fabricate three-dimensional (3D) metal-dielectric-metal (MDM) plasmonic nanocavities that are capable of amplifying second-harmonic lights by up to three orders of magnitude with respect to dielectric-metal counterparts. In combination with experimental estimations of quantitative contributions of constituent parts in proposed 3D MDM designs, we further theoretically disclose the mechanism governing this signal amplification. We discover that this phenomenon can be attributed to the plasmon hybridization of both dipolar plasmon resonances and gap cavity resonances, such that an energy exchange channel can be attained and helps expand modal volumes while maintaining strong field localizations. Our results may advance the understanding of efficient nonlinear harmonic generations in 3D plasmonic nanostructures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.