It was previously reported that poly-(adenosine diphosphate-ribose) polymerase-1 (PARP-1) regulated ionizing radiation (IR)-induced autophagy in CNE-2 human nasopharyngeal carcinoma cells. The present study aimed to investigate whether PARP-1-mediated IR-induced autophagy occurred via activation of the liver kinase B1 (LKB1)/adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signaling pathway in CNE-2 cells. In addition, the effect of PARP-1 and AMPK inhibition on the radiation sensitization of CNE-2 cells was investigated. CNE-2 cells were treated with 10 Gy IR in the presence or absence of the AMPK activator 5-amino-1-β-D-ribofuranosyl-1H-imidazole-4-carboxamide (AICAR). In addition, IR-treated CNE-2 cells were transfected with lentivirus-delivered small-hairpin RNA or treated with the AMPK inhibitor Compound C. Western blot analysis was used to assess the protein expression of PARP-1, phosphorylated (p)-AMPK, microtubule-associated protein 1 light chain 3 (LC3)-II and p-P70S6K. Cell viability and clone formation assays were performed to determine the effect of PARP-1 silencing and AMPK inhibition on the radiation sensitization of CNE-2 cells. The results showed that IR promoted PARP-1, p-AMPK and LC3-II protein expression as well as decreased p-P70S6K expression compared with that of the untreated cells. In addition, AICAR increased the expression of p-AMPK and LC3-II as well as decreased p-P70S6K expression compared with that of the IR-only group; however, AICAR did not increase PARP-1 expression. Furthermore, PARP-1 gene silencing decreased the expression of PARP-1, p-AMPK and LC3-II as well as increased p-P70S6K expression. Compound C decreased p-AMPK and LC3-II expression as well as increased p-P70S6K expression; however, Compound C did not increase PARP-1 expression. Western blot analysis detected limited expression of p-LKB1 in all treatment groups. Cell viability and clone formation assays revealed that PARP-1 or AMPK inhibition reduced the proliferation of CNE-2 cells following IR. In conclusion, the present study demonstrated that PARP-1 promoted autophagy via the AMPK/mTOR pathway; in addition, PARP-1 or AMPK inhibition contributed to the radiation sensitization of CNE-2 cells following IR. However, it remains to be elucidated whether PARP-1 is an upstream mediator of the LKB1 pathway in CNE-2 cells following IR.
Although radiotherapy is generally effective in the treatment of major nasopharyngeal carcinoma (NPC), this treatment still makes approximately 20% of patients radioresistant. Therefore, the identification of blood or biopsy biomarkers that can predict the treatment response to radioresistance and that can diagnosis early stages of NPC would be highly useful to improve this situation. Proteomics is widely used in NPC for searching biomarkers and comparing differentially expressed proteins. In this review, an overview of proteomics with different samples related to NPC and common proteomics methods was made. In conclusion, identical proteins are sorted as follows: Keratin is ranked the highest followed by such proteins as annexin, heat shock protein, 14-3-3σ, nm-23 protein, cathepsin, heterogeneous nuclear ribonucleoproteins, enolase, triosephosphate isomerase, stathmin, prohibitin, and vimentin. This ranking indicates that these proteins may be NPC-related proteins and have potential value for further studies.
Radioresistance is the major cause of poor prognosis in nasopharyngeal carcinoma (NPC). To identify and characterize the secretome associated with NPC radioresistance, we compared the conditioned serum-free medium of radioresistant CNE-2R cells with that of the parental radiosensitive CNE-2 cells using isobaric tags for relative and absolute quantitation (iTRAQ) with liquid chromatography-electrospray tandem mass spectrometry (LC-ESI-MS/MS) quantitative proteomics. Before proceeding to quantitative proteomics, we investigated the survival curves of CNE-2R and CNE-2 cells by colony formation assay, and the CNE-2R survival curves were significantly higher than those for CNE-2. In total, 3,581 proteins were identified in the quantitative proteomics experiments, and 40 proteins exhibited significant differences between the CNE-2R and CNE-2 cells. Twenty-six of the 40 proteins were secreted by classical, non-classical, or exosomal secretion pathways. To verify the reliability of iTRAQ quantitative proteomics, we applied western blotting (WB) to study the secretory protein expression of fibrillin-2, CD166, sulfhydryl oxidase 1 and cofilin-2, which are involved in cell adhesion, migration and invasion. The WB results showed that fibrillin-2 (p=0.017) and sulfhydryl oxidase 1 (p=0.000) were highly expressed in the CNE-2 cells, while CD166 (p=0.012) and cofilin-2 (p=0.003) were highly expressed in the CNE-2R cells, which was in accordance with iTRAQ quantitative proteomics. Finally, a phenotypic subset of CD166-positive NPC cells was verified by immunocytochemistry. In summary, we defined a collection of secretory proteins that may be relevant to the radioresistance in NPC cells, and we determined that CD166, which is widely used as a positive marker of cancer stem cells, is expressed in NPC cells.
The present study aimed to identify whether CD166 can be used as a biomarker for predicting the response of nasopharyngeal carcinoma (NPC) to radiotherapy. The serum concentration of CD166 in patients with NPC were detected by enzyme-linked immunosorbent assay. The secreted level of CD166 with radioresistant NPC was significantly higher than that with radiosensitive NPC. In vitro, the CD166 positive rate in the CNE2 cell membrane was significantly lower than that in the CNE2R cell membrane. The magnetic-activated cell sorting technology was used to obtain CNE-2R-CD166(+) and CNE-2R-CD166(−) cell lines. Then radiosensitivity, cell proliferation, and apoptosis were assessed using colony formation assay, cell counting kit 8 assay (CCK-8), and flow cytometry, respectively. The radiation sensitivity ratio was 1.28, indicating that the CNE2R-CD166(−) cells had a stronger radiation sensitivity. The result of CCK-8 assay indicated that the survival fraction of CNE2R-CD166(+) cells was significantly higher than that of CNE2R-CD166(−) cells. The apoptotic rate of CNE2R-CD166(+) cells was significantly lower than that of CNE2R-CD166(−) cells. Our data demonstrate that the secreted protein CD166 may be can used as a biomarker for predicting the response of NPC to radiotherapy.
Incidence rates of nasopharyngeal carcinoma are high in Indonesia, Singapore and South-Eastern China. Chemoradiotherapy has been the standard regimen for locally advanced nasopharyngeal carcinoma according to guidelines from the National Comprehensive Cancer Network. Recently, advances in the management of nasopharyngeal carcinoma have transferred into better treatment outcomes. Most phase III clinical trials support the addition of concurrent chemotherapy to radiotherapy for the initial treatment of these patients. Studies evaluating effects and toxicity of concurrent chemotherapy with different regimens have been reported. However, the status of adding adjuvant chemotherapy or induction chemotherapy remains controversial. Recent studies have shown that adjuvant chemotherapy with two or three cycles may improve survival for nasopharyngeal carcinoma with stage N2-3 disease or with persistently detectable plasma EBV DNA after radiotherapy. This review examines the pertinent issues and latest studies concerning the management of loco-regionally advanced NPC, regarding concurrent chemotherapy, adjuvant chemotherapy, and induction chemotherapy in decades.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.