Inactivated Sendai virus (HVJ-E) directly kills cancer cells by inducing apoptosis through a mechanism mediated by Janus kinases=signal transducers and activators of transcription (JAK=STAT) signaling pathways. However, whether other signaling pathways are involved remain largely unknown. This study aimed to investigate the mechanism underlying HVJ-E-induced apoptosis in murine B16F10 melanoma cells. We found that HVJ-E induced B16F10 cell apoptosis via the caspase pathway, particularly caspase-9, which mediates the intrinsic apoptotic pathway. Mitogen-activated protein kinase (MAPK) pathway activation also contributed to HVJ-E-induced apoptosis. Whereas caspase pathway involvement depended on both IFN-b promoter stimulator-1 (IPS-1) and type I interferon (IFN), MAPK pathway activation was independent of type I IFN but involved IPS-1. In addition, intratumoral HVJ-E treatment displayed a direct oncolytic effect in an in vivo BALB=c nude mouse melanoma model. Collectively, our data provides new insights into the mechanism underlying HVJ-E-induced apoptosis in tumor cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.