Using an Affymetrix 10K SNP array to screen for gene copy number changes in breast cancer, we detected a single-gene amplification of the ESR1 gene, which encodes estrogen receptor alpha, at 6q25. A subsequent tissue microarray analysis of more than 2,000 clinical breast cancer samples showed ESR1 amplification in 20.6% of breast cancers. Ninety-nine percent of tumors with ESR1 amplification showed estrogen receptor protein overexpression, compared with 66.6% cancers without ESR1 amplification (P < 0.0001). In 175 women who had received adjuvant tamoxifen monotherapy, survival was significantly longer for women with cancer with ESR1 amplification than for women with estrogen receptor-expressing cancers without ESR1 amplification (P = 0.023). Notably, we also found ESR1 amplification in benign and precancerous breast diseases, suggesting that ESR1 amplification may be a common mechanism in proliferative breast disease and a very early genetic alteration in a large subset of breast cancers.
Context: Genetic aberration in phosphatidylinositol 3-kinase (PI3K)/AKT pathway has been detected in numerous and diverse human cancers. PIK3CA, which encodes for the catalytic subunit of p110␣ of PI3K, is amplified in some cases of papillary thyroid cancer (PTC). Mutations in the PIK3CA have also been identified in thyroid cancers and, although relatively common in anaplastic thyroid carcinoma, are uncommon in PTC.Objective: The objective of the study was to investigate genetic alterations like PIK3CA gene mutation, PIK3CA amplification, RAS, and RAF mutations and to further explore the relationship of these genetic alterations with various clinicopathological characteristics in Middle Eastern PTC. Design:We used the fluorescence in situ hybridization technique for analysis of PIK3CA amplification from 536 PTC cases, and selected amplified samples were further validated by real-time quantitative PCR. Mutation analysis was done by direct DNA sequencing of PIK3CA, N2-RAS, and BRAF genes.Results: PIK3CA amplification was seen in 265 of 499 PTC cases analyzed (53.1%); PIK3CA gene mutations in four of 207 PTC (1.9%); N2-RAS mutations in 16 of 265 PTC (6%); and BRAF mutations in 153 of 296 PTC (51.7%). N-RAS mutations were-associated with an early stage (P ϭ 0.0465) and lower incidence of extrathyroidal extension (P ϭ 0.027), whereas BRAF mutations were-associated with metastasis (P ϭ 0.0274) and poor disease-free survival (P ϭ 0.0121) in PTCs. P apillary thyroid carcinoma (PTC) is the most common malignant thyroid tumor, representing 80 -90% of all thyroid malignancies. PTC is usually well differentiated; however, the clinical behavior of PTC varies widely. For example, incidental microcarcinomas grow very slowly and are noninvasive or minimally invasive. On the other hand, invasive PTC with metastasis can be lethal. PTC often recurs many years after surgical removal. The prognosis for PTC is often favorable; however, approximately 20% of PTC tumors recur, and some reach advanced stages (1). Several clinicopathological variables including stage, cancer invasion, and distant metastasis are used for prognostication and treatment selection for PTC (2, 3). A better understanding of the factors and mechanisms determining the aggressive behavior of some papillary carcinomas is critical in developing new treatment. Conclusion
To identify genes potentially playing an important role in the progression of colorectal carcinoma (CRC), we screened global gene expression using cDNA expression array on 41 CRC tissue samples and 25 noncancerous colorectal tissue samples. Among the up-regulated genes, forkhead box M1 (FOXM1) has been shown to play a critical role in pathogenesis of various malignancies. Using immunohistochemistry on 448 Saudi CRC samples in tissue microarray format, FoxM1 protein overexpression was seen in 66% of CRC tissues and was significantly associated with poorly differentiated and highly proliferative tumors (P = 0.0200 and 0.0018, respectively). FoxM1 expression was also significantly associated with MMP-9 protein expression (P = 0.0002). In vitro data using CRC cell lines showed that inhibition of FoxM1 by thiostrepton resulted in inhibition of proliferation and induction of apoptosis in a dose-dependent manner. Overexpression of FoxM1 potentiated cell proliferation, cell transformation, and migration/invasion of CRC cells via up-regulation of FoxM1 target genes MMP2 and MMP9 and protected these cells from thiostrepton-mediated antiproliferative effects. Finally, in vivo, overexpression of FoxM1 promoted growth of CRC-cell line xenograft tumors in nude mice. Altogether, our data indicate that FoxM1 signaling contributes to aggressiveness in a subset of CRC and that the FOXM1 gene may serve as a useful molecular biomarker and potential therapeutic target.
Altogether, this is the first study showing that FoxM1 and its associated signaling pathway play a critical role in the pathogenesis of PTC and may be a potential target for therapeutic intervention for treatment of these cancers.
In an attempt to find genes that may be of importance in malignant progression of papillary thyroid carcinoma (PTC) in the Middle East, which therefore can be targeted in cancer therapy, we screened and validated the global gene expression in PTC using cDNA expression arrays and immunohistochemistry (IHC) on tumour tissue microarrays. Twenty-nine PTC tissue specimens were compared with seven non-cancerous thyroid specimens by use of cDNA microarray. Results for selected genes were confirmed by quantitative real-time PCR. Protein expression of selected genes was further studied using a tissue microarray consisting of 536 PTCs and compared with histologically non-cancerous tissue samples. One hundred and ninety-six genes were overexpressed in PTC tissues relative to non-cancerous thyroid tissues. The genes that were up-regulated in PTC were involved in cell cycle regulation, cell signaling, and oncogenesis. Among these genes, c-MET was identified by immunohistochemical methods as a protein that is overexpressed in 37% of PTCs and was significantly associated with more aggressive behaviour, eg higher stage, nodal involvement, and tall cell variant (p value = 0.01, 0.01 and 0.04, respectively). In this study, 55% of the PTC cases expressed activated AKT (P-AKT), which suggests that activated AKT may play an important role in PTC tumourigenesis. The fact that most of the PTC cases that had activated AKT showed overexpression of c-MET (p = 0.027) leads us to hypothesize that c-MET may be an alternative mechanism of AKT activation in Middle Eastern PTCs. Finally, our data suggest that c-MET dysregulation is associated with aggressive behaviour and may serve as a molecular biomarker and potential therapeutic target in this disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.