Terahertz (THz) radiation is ideally suited for noninvasive testing and short-distance data transmission. Actively controlling the polarization of THz waves is highly desirable in measurement systems. Although significant developments of THz active devices has been achieved through introducing the electromagnetic resonance structure (e.g., metamaterials), the bandwidth is limited. Here, we propose a graphene-based electrically reconfigurable polarization conversion across a broadband THz region (0.3 to 0.9 THz) for controlling the chiral polarization of terahertz pulse. By electrically controlling the graphene conductivity, we can switch the device reflection in-between total internal reflection and metal mirror reflection to realize a frequency-independent phase change, which enables a tunable waveplate with a high dynamic range for manipulating the polarization of THz waves. Because of the frequency-independent modulation property, we achieved tunable chiral polarization THz waveforms in the time domain for the first time, from right-handed to left-handed polarization. This work opens up a new mechanism for designing novel THz modulators for THz circular dichroism.
Optical bound states in the continuum (BICs) offer strong interactions with quantum emitters and have been extensively studied for manipulating spontaneous emission, lasing, and polariton Bose−Einstein condensation. However, the out-coupling efficiency of quasi-BIC emission, crucial for practical light-emitting devices, has received less attention. Here, we report an adaptable approach for enhancing quasi-BIC emission from a resonant monocrystalline silicon (c-Si) metasurface through lattice and multipolar engineering. We identify dual-BICs originating from electric quadrupoles (EQ) and out-of-plane magnetic dipoles, with EQ quasi-BICs exhibiting concentrated near-fields near the c-Si nanodisks. The enhanced fractional radiative local density of states of EQ quasi-BICs overlaps spatially with the emitters, promoting efficient out-coupling. Furthermore, coupling the EQ quasi-BICs with Rayleigh anomalies enhances directional emission intensity, and we observe inherent opposite topological charges in the multipolarly controlled dual-BICs. These findings provide valuable insights for developing efficient nanophotonic devices based on quasi-BICs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.