Diabetes mellitus (DM), an emerging chronic epidemic, contributes to mortality and morbidity around the world. Diabetic cardiac autonomic neuropathy (DCAN) is one of the most common complications associated with DM. Previous studies have shown that satellite glial cells (SGCs) in the superior cervical ganglia (SCG) play an indispensable role in DCAN progression. In addition, it has been shown that purinergic neurotransmitters, as well as metabotropic GPCRs, are involved in the pathophysiological process of DCAN. Furthermore, one traditional Chinese medicine, naringin may potently alleviate the effects of DCAN. Ferroptosis may be involved in DCAN progression. However, the role of naringin in DCAN as well as its detailed mechanism requires further investigation. In this research, we attempted to identify the effect and relevant mechanism of naringin in DCAN mitigation. We observed that compared with those of normal subjects, there were significantly elevated expression levels of P2Y14 and IL-1β in diabetic rats, both of which were remarkably diminished by treatment with either P2Y14 shRNA or naringin. In addition, abnormalities in blood pressure (BP), heart rate (HR), heart rate variability (HRV), sympathetic nerve discharge (SND), and cardiac structure in the diabetic model can also be partially returned to normal through the use of those treatments. Furthermore, a reduced expression of NRF2 and GPX4, as well as an elevated level of ROS, were detected in diabetic cases, which can also be improved with those treatments. Our results showed that naringin can effectively relieve DCAN mediated by the P2Y14 receptor of SGCs in the SCG. Moreover, the NRF2/GPX4 pathway involved in ferroptosis may become one of the principal mechanisms participating in DCAN progression, which can be modulated by P2Y14-targeted naringin and thus relieve DCAN. Hopefully, our research can supply one novel therapeutic target and provide a brilliant perspective for the treatment of DCAN.
Schisantherin A (Sch A) is a dibenzocyclooctadiene lignan monomer isolated from the fruit of Schisandra chinensis (Turcz.) Baill. (S. chinensis). At present, many studies have shown that Sch A has a wide range of pharmacological effects, including its anti-Parkinson and anti-inflammatory effects and ability to protect the liver, protect against ischemia-reperfusion (I/R) injury, suppress osteoclast formation, and improve learning and memory. Its mechanism may be related to the antioxidant, anti-inflammatory, and antiapoptotic properties of Sch A through the MAPK, NF-κB, AKT/GSK3β, and PI3K/AKT pathways. This is the first review of the recent studies on the pharmacological mechanism of Sch A.
Diabetic cardiovascular autonomic neuropathy (DCAN) is a common complication of diabetes mellitus which brings about high mortality, high morbidity, and large economic burden to the society. Compensatory tachycardia after myocardial ischemia caused by DCAN can increase myocardial injury and result in more damage to the cardiac function. The inflammation induced by hyperglycemia can increase P2X7 receptor expression in the superior cervical ganglion (SCG), resulting in nerve damage. It is proved that inhibiting the expression of P2X7 receptor at the superior cervical ganglion can ameliorate the nociceptive signaling dysregulation induced by DCAN. However, the effective drug used for decreasing P2X7 receptor expression has not been found. Schisandrin B is a traditional Chinese medicine, which has anti-inflammatory and antioxidant effects. Whether Schisandrin B can decrease the expression of P2X7 receptor in diabetic rats to protect the cardiovascular system was investigated in this study. After diabetic model rats were made, Schisandrin B and shRNA of P2X7 receptor were given to different groups to verify the impact of Schisandrin B on the expression of P2X7 receptor. Pathological blood pressure, heart rate, heart rate variability, and sympathetic nerve discharge were ameliorated after administration of Schisandrin B. Moreover, the upregulated protein level of P2X7 receptor, NLRP3 inflammasomes, and interleukin-1β in diabetic rats were decreased after treatment, which indicates that Schisandrin B can alleviate the chronic inflammation caused by diabetes and decrease the expression levels of P2X7 via NLRP3. These findings suggest that Schisandrin B can be a potential therapeutical agent for DCAN.
Diabetic neuropathic pain (DNP) is a common complication of diabetes, and its complicated pathogenesis as well as clinical manifestations has brought great troubles to clinical treatment. The spinal cord is an important part of regulating the occurrence and development of DNP. Spinal microglia can regulate the activity of spinal cord neurons and have a regulatory effect on chronic pain. P2Y12 receptor is involved in DNP. P2Y14 and P2Y12 receptor belong to the Gi subtype of P2Y receptors, but there is no report that P2Y14 receptor is involved in DNP. Closely related to many human diseases, the dysregulation of lncRNA has the effect of promoting or inhibiting the occurrence and development of diseases. The aim of this research is to investigate the function of spinal cord P2Y14 receptor in type 2 DNP and to understand the function as well as the possible mechanism of lncRNA-UC.25+ (UC.25+) in rat spinal cord P2Y14 receptor-mediated DNP. Our results showed that P2Y14 shRNA can reduce the expression of P2Y14 in DNP rats, thereby restraining the activation of microglia, decreasing the expression of inflammatory factors and the level of p38 MAPK phosphorylation. At the same time, UC.25+ shRNA can down-regulate the expression of P2Y14 receptor, reduce the release of inflammatory factors, and diminish the p38 MAPK phosphorylation, indicating that UC.25+ can alleviate spinal cord P2Y14 receptor-mediated DNP. The RNA immunoprecipitation result showed that UC.25+ enriched STAT1 and positively regulated its expression. The chromatin immunoprecipitation result indicated that STAT1 combined to the promoter region of P2Y14 receptor and positively regulated the expression of P2Y14 receptor. Therefore, we infer that UC.25+ may alleviate DNP in rats by regulating the expression of P2Y14 receptor in spinal microglia via STAT1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.