Solid-film electrets and cellular electrets are defined as promising insulating dielectric materials containing permanent electrostatic and polarizations. High-performance charging methods are critical for electret transducers. Unlike dielectric barrier discharge (DBD) charging, the soft X-ray charging method, with its strong penetration ability, has been widely used in electrets after packaging and has even been embedded in high-aspect-ratio structures (HARSs). However, the related charging model and the charging effect of the soft X-ray irradiation remain unclear. In this study, the charge carrier migration theory and the one-dimensional electrostatic model were employed to build the soft X-ray charging models. The influence of soft X-ray irradiation under deferent poling voltages was investigated theoretically and experimentally. The conducted space charge measurement based on a pulsed electro-acoustic (PEA) system with a soft X-ray generator revealed that soft X-ray charging can offer higher surface charge densities and piezoelectricity to cellular electrets under the critical poling voltage lower than twice the breakdown voltage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.