Over the past few decades, graphitic carbon nitride (g‐C3N4) has arisen much attention as a promising candidate for photocatalytic hydrogen evolution reaction (HER) owing to its low cost and visible light response ability. However, the unsatisfied HER performance originated from the strong charge recombination of g‐C3N4 severely inhibits the further large‐scale application of g‐C3N4. In this case, the utilization of cocatalysts is a novel frontline in the g‐C3N4‐based photocatalytic systems due to the positive effects of cocatalysts on supressing charge carrier recombination, reducing the HER overpotential, and improving photocatalytic activity. This review summarizes some recent advances about the high‐performance cocatalysts based on g‐C3N4 toward HER. Specifically, the functions, design principle, classification, modification strategies of cocatalysts, as well as their intrinsic mechanism for the enhanced photocatalytic HER activity are discussed here. Finally, the pivotal challenges and future developments of cocatalysts in the field of HER are further proposed.
Hollow metal sulfides have been extensively investigated as photocatalysts for hydrogen evolution reaction (HER) due to their enhanced light harvesting ability and sufficient catalytic sites. However, their HER performances are...
Forests play an important role in acting as a carbon sink of terrestrial ecosystem. Although global forests have huge carbon carrying capacity (CCC) and carbon sequestration potential (CSP), there were few quantification reports on Chinese forests. We collected and compiled a forest biomass dataset of China, a total of 5841 sites, based on forest inventory and literature search results. From the dataset we extracted 338 sites with forests aged over 80 years, a threshold for defining mature forest, to establish the mature forest biomass dataset. After analyzing the spatial pattern of the carbon density of Chinese mature forests and its controlling factors, we used carbon density of mature forests as the reference level, and conservatively estimated the CCC of the forests in China by interpolation methods of Regression Kriging, Inverse Distance Weighted and Partial Thin Plate Smoothing Spline. Combining with the sixth National Forest Resources Inventory, we also estimated the forest CSP. The results revealed positive relationships between carbon density of mature forests and temperature, precipitation and stand age, and the horizontal and elevational patterns of carbon density of mature forests can be well predicted by temperature and precipitation. The total CCC and CSP of the existing forests are 19.87 and 13.86 Pg C, respectively. Subtropical forests would have more CCC and CSP than other biomes. Consequently, relying on forests to uptake carbon by decreasing disturbance on forests would be an alternative approach for mitigating greenhouse gas concentration effects besides afforestation and reforestation.carbon carrying capacity, carbon sequestration potential, China, climate, mature forest, pattern, reference level, stand age
Citation:Liu YC, Yu GR, Wang QF, Zhang YJ, Xu ZH. Carbon carry capacity and carbon sequestration potential in China based on an integrated analysis of mature forest biomass.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.