Background: The purpose of this study was to examine the effects of exposure to imatinib in the prenatal period on testis development in rats. Methods: Although all the study groups received intraperitoneal imatinib on prenatal days 1–8, no pregnancy occurred in the Imatinib-80 group. Immunohistochemical analysis, TUNEL, c-kit and PDGF staining revealed no difference between the groups in terms of positivity scoring. Results: A significant decrease was detected in total sperm counts in the Imatinib-20 group compared to the control group, but the sperm count was higher in the Imatinib-60 group than in the Imatinib-20 group. At biochemical measurements, the drug increased oxidative stress in the testis and serum in the Imatinib-20 group, but caused a decrease in tissue in the Imatinib-60 group. Thiol measurements revealed a decrease in the testis and serum in the Imatinib-60 group, while an increase in serum measurements was observed in the Imatinib-40 group. Analysis revealed no difference between the groups in terms of protamine and histone gene expression levels in testis tissue exposed to imatinib. Conclusion: Our findings show that prenatal exposure to imatinib can lead to histopathological and biochemical changes in testis tissue, but that no adverse effect occurs in nuclear maturation of germ cells during spermiogenesis.
We set out to investigate the effects of gadodiamide and gadoteric acid, used for magnetic resonance imaging, on the lungs. In this study, 32 male Sprague Dawley rats were used. These were allocated into four groups; The first group (control) was untreated. The second group received isotonic saline on the first and fourth days of the week for 5 weeks. Following the same schedule, the third and fourth groups received a total of 2 mg/kg gadodiamide and gadoteric acid, respectively, in place of saline. The alveolar Wall thickness was evaluated. Gadodiamide and gadoteric acid significantly increased the numbers of collagen-3 and caspase-3 positive cells in the lung tissue (p < 0.05). In addition, these two substances increased the alveolar Wall thickness (p < 0.05). Furthermore, they increased the levels of malondialdehyde and glutathione (p < 0.05). This study demonstrates that both linear and macrocyclic contrast agents are toxic for the lungs in rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.