BackgroundThe frequently discovered incidental findings (IFs) from imaging observations are increasing. The IFs show the potential clues of structural abnormalities underlying cognitive decline in elders. Detecting brain IFs and their relationship with cognitive and behavioral functions helps provide the information for clinical strategies.MethodsFive hundred and seventy-nine participants were recruited in the Shanghai Changfeng Study. All participants performed the demographic, biochemical, and cognitive functions and gait speed assessment and underwent the high-resolution multimodal magnetic resonance imaging scans. We calculated the detection rate of brain IFs. The association between cardiovascular risk factors and IFs and the associations between IFs and cognitive and motor functions were assessed using regression models. The relationships among gray matter volume, cognitive function, and gait speed were assessed with/without adjusting the IFs to evaluate the effects of potential IFs confounders.ResultsIFs were found in a total of 578 subjects with a detection rate of 99.8%. Age and blood pressure were the most significant cardiovascular risk factors correlated with IFs. IFs were found to be negatively associated with Montreal Cognitive Assessment, Mini-Mental State Examination, and gait speed. The gray matter volume was found to be positively correlated with the cognitive function without adjusting the white matter hyperintensity but not if adjusted.ConclusionIFs are commonly found in the elderly population and related to brain functions. The adequate intervention of IFs related cardiovascular risk factors that may slow down the progression of brain function decline. We also suggest that IFs should be considered as confounding factors that may affect cognitive issues on the structural neuroimaging researches in aging or diseases.
White matter hyperintensity (WMH) is associated with vascular hemodynamic alterations and reflects white matter injury. To date, the sex difference of tract‐specific WMH and the relationship between high blood pressure (BP) and tract‐specific WMH remain unclear. We recruited 515 subjects from the Shanghai Changfeng study (range 53–89 years, mean age 67.33 years). Systolic and diastolic blood pressure (SBP and DBP) were collected and used to calculate pulse pressure (PP). Magnetic resonance T1 and T2 FLAIR images were acquired to measure WMH and calculate WMH index. The ANCOVA test was performed to test the difference between sexes, and the linear regression model was used to examine the associations between BP and WMH index. Men showed higher WMH index than women in all white matter tracts (p < .001, respectively) except for the bilateral superior longitudinal fasciculus (SLF) and its left temporal part (tSLF). High SBP and PP was associated with a lower WMH index on the left corticospinal tract (CST), SLF, tSLF and right cingulum in hippocampus (p ≤ .001, respectively) in women, while high DBP was associated with a higher WMH index on the bilateral CST (left p < .001; right p = .001), left inferior longitudinal fasciculus (p < .001) and inferior fronto‐occipital fasciculus (p = .002) in men. Men tend to have more WMH compared to women. A high SBP/PP relates to a lower WMH burden in women. This suggests that women could benefit from higher blood pressure in older age.
Objective. Basing on the coherence character of the Synchrotron radiation (SR), the mouse kidney study is performed using the propagation-based phase-contrast imaging (PCI) technology which as one approach of the phase contrasts imaging (PCI). The aim of this paper was to visualize the kidney at different ages and evaluate the latent value of aging mechanism with SR phase contrast imaging technology. Methods. The experiments were performed at the BL13W1 line of the SSRF (the Shanghai synchrotron radiation facility), the samples were soaked in 10% formalin solution, the mouse kidneys at different ages were imaged on the shelf in the propagation-based phase-contrast imaging setup and captured with CCD. The captured images were analyzed and compared. Results. When the distance is 50 cm between the samples and imaging plate, good contrast and high resolution were obtained in the propagation-based phase-contrast imaging (PCI), as such renal capsule revealed well, and the resolution reach to 30 micron; there is significant difference in the shape and vessels structures among the mouse kidneys at different age. Conclusion. The PCI is good for the applying of main light element organization imaging, the difference in shape and vessels structure between the young and old mouse kidney maybe indicated at some extent with the propagation-based phase-contrast imaging technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.