Purpose Electromagnetic tracking systems, frequently used in minimally invasive surgery, are affected by conductive distorters. The influence of conductive distorters on electromagnetic tracking system accuracy can be reduced through magnetic field modifications. This approach was developed and tested.Methods The voltage induced directly by the emitting coil in the sensing coil without additional influence by the conductive distorter depends on the first derivative of the voltage on the emitting coil. The voltage which is induced indirectly by the emitting coil across the conductive distorter in the sensing coil, however, depends on the second derivative of the voltage on the emitting coil. The electromagnetic tracking system takes advantage of this difference by supplying the emitting coil with a quadratic excitation voltage. The method is adaptive relative to the amount of distortion cause by the conductive distorters. This approach is evaluated with an experimental setup of the electromagnetic tracking system.Results In vitro testing showed that the maximal error decreased from 10.9 to 3.8 mm when the quadratic voltage was used to excite the emitting coil instead of the sinusoidal voltage. Furthermore, the root mean square error in the proximity of the aluminum disk used as a conductive distorter was reduced from 3.5 to 1.6 mm when the electromagnetic tracking system used the quadratic instead of sinusoidal excitation.Conclusions Electromagnetic tracking with quadratic excitation is immune to the effects of a conductive distorter, especially compared with sinusoidal excitation of the emitting coil. Quadratic excitation of electromagnetic tracking for computer-assisted surgery is promising for clinical applications.
Abstract. Image-guided surgical systems are increasingly becoming established tools for visual aid in several interventional procedures. In this paper, we introduce a prototypic add-on system for enhancing the intraoperative visualization within a navigated spine surgery utilizing an extended reality approach. In essence, operation-specific important anatomical structures are segmented from preoperative patient data and superimposed on the video stream of the operation field. In addition, slices of the anatomy data, as well as shape and depth information of targeted structures, like spinal nerves or herniated discs, can be blended, which allows for a better protection of risk anatomy and accurate identification of the structures under consideration, and thus raises the safety and accuracy factors of the intervention.
A fully automatic iterative training approach for the generation of discriminative shape models for usage in the Generalized Hough Transform (GHT) is presented. The method aims at capturing the shape variability of the target object contained in the training data as well as identifying confusable structures (anti-shapes) and integrating this information into one model. To distinguish shape and anti-shape points and to determine their importance, an individual positive or negative weight is estimated for each model point by means of a discriminative training technique. The model is built from edge points surrounding the target point and the most confusable structure as identified by the GHT. Through an iterative approach, the performance of the model is gradually improved by extending the training dataset with images, where the current model failed to localize the target point. The proposed method is successfully tested on a set of 670 long-leg radiographs, where it achieves a localization rate of 74-97% for the respective tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.