SummaryThe objective of genome mapping is to achieve valuable insight into the connection between gene variants (genotype) and observed traits (phenotype). Part of that objective is to understand the selective forces that have operated on a population. Finding links between genotype–phenotype changes makes it possible to identify selective sweeps by patterns of genetic variation and linkage disequilibrium. Based on Illumina 50KSNP chip data, two approaches, XP‐EHH (cross‐population extend haplotype homozygosity) and FST (fixation index), were carried out in this research to identify selective sweeps in the genome of three Iranian local sheep breeds: Baluchi (n = 86), Lori‐Bakhtiari (n = 45) and Zel (n = 45). Using both methods, 93 candidate genomic regions were identified as harboring putative selective sweeps. Bioinformatics analysis of the genomic regions showed that signatures of selection related to multiple candidate genes, such as HOXB9, HOXB13, ACAN, NPR2, TRIL, AOX1, CSF2, GHR, TNS2, SPAG8, HINT2, ALS2, AAAS, RARG, SYCP2, CAV1, PPP1R3D, PLA2G7, TTLL7 and C20orf10, that play a role in skeletal system and tail, sugar and energy metabolisms, growth, reproduction, immune and nervous system traits. Our findings indicated diverse genomic selection during the domestication of Iranian sheep breeds.
Mastitis, inflammation of the mammary gland, is the most prevalent disease in dairy cattle that has a potential impact on profitability and animal welfare. Specifically designed multi-omics studies can be used to prioritize candidate genes and identify biomarkers and the molecular mechanisms underlying mastitis in dairy cattle. Hence, the present study aimed to explore the genetic basis of bovine mastitis by integrating microarray and RNA-Seq data containing healthy and mastitic samples in comparative transcriptome analysis with the results of published genome-wide association studies (GWAS) using a literature mining approach. The integration of different information sources resulted in the identification of 33 common and relevant genes associated with bovine mastitis. Among these, seven genes—CXCR1, HCK, IL1RN, MMP9, S100A9, GRO1, and SOCS3—were identified as the hub genes (highly connected genes) for mastitis susceptibility and resistance, and were subjected to protein-protein interaction (PPI) network and gene regulatory network construction. Gene ontology annotation and enrichment analysis revealed 23, 7, and 4 GO terms related to mastitis in the biological process, molecular function, and cellular component categories, respectively. Moreover, the main metabolic-signalling pathways responsible for the regulation of immune or inflammatory responses were significantly enriched in cytokine–cytokine-receptor interaction, the IL-17 signaling pathway, viral protein interaction with cytokines and cytokine receptors, and the chemokine signaling pathway. Consequently, the identification of these genes, pathways, and their respective functions could contribute to a better understanding of the genetics and mechanisms regulating mastitis and can be considered a starting point for future studies on bovine mastitis.
The TORC2 gene is responsible for nutrient metabolism, gluconeogenesis, myogenesis and adipogenesis through the PI3K-Akt, AMPK, glucagon and insulin resistance signaling pathways. Sequencing of PCR amplicons explored three novel SNPs at loci g.16534694G>A, g.16535011C>T, and g.16535044A>T in the promoter region of the TORC2 gene in the Qinchuan breed of cattle. Allelic and genotypic frequencies of these SNPs deviated from Hardy-Weinberg equilibrium (HWE) (P < 0.05). SNP1 genotype GG, SNP2 genotype CT and SNP3 genotype AT showed significantly (P <0.05) larger body measurement and improved carcass quality traits. Haplotype H1 (GCA) showed significantly (p<0.01) higher transcriptional activity (51.44%) followed by H4 (ATT) (34.13%) in bovine preadipocytes. The diplotypes HI-H3 (GG-CC-AT), H1-H2 (GG-CT-AT) and H3-H4 (GA-CT-TT) showed significant (P<0.01) associations with body measurement and improved carcass quality traits. Analysis of the relative mRNA expression level of the TORC2 gene in different tissues within two different age groups revealed a significant increase (P<0.01) in liver, small intestine, muscle and fat tissues with growth from calf stage to adult stage. We can conclude that variants mapped within TORC2 can be used in marker-assisted selection for carcass quality and body measurement traits in breed improvement programs of Qinchuan cattle.
The purpose of the current review was to explore and summarize different studies concerning the detection and characterization of candidate genes and genomic regions associated with economically important traits in Hanwoo beef cattle. Hanwoo cattle, the indigenous premium beef cattle of Korea, were introduced for their marbled fat, tenderness, characteristic flavor, and juiciness. To date, there has been a strong emphasis on the genetic improvement of meat quality and yields, such as backfat thickness (BFT), marbling score (MS), carcass weight (CW), eye muscle area (EMA), and yearling weight (YW), as major selection criteria in Hanwoo breeding programs. Hence, an understanding of the genetics controlling these traits along with precise knowledge of the biological mechanisms underlying the traits would increase the ability of the industry to improve cattle to better meet consumer demands. With the development of high-throughput genotyping, genomewide association studies (GWAS) have allowed the detection of chromosomal regions and candidate genes linked to phenotypes of interest. This is an effective and useful tool for accelerating the efficiency of animal breeding and selection. The GWAS results obtained from the literature review showed that most positional genes associated with carcass and growth traits in Hanwoo are located on chromosomes 6 and 14, among which LCORL, NCAPG, PPARGC1A, ABCG2, FAM110B, FABP4, DGAT1, PLAG1, and TOX are well known. In conclusion, this review study attempted to provide comprehensive information on the identified candidate genes associated with the studied traits and genes enriched in the functional terms and pathways that could serve as a valuable resource for future research in Hanwoo breeding programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.