Since its first introduction by Karlsson and Novotny in 1988 nano-LC has emerged as a complementary and/or competitive separation method to conventional HPLC, offering several advantages such as higher efficiency, ability to work with minute sample sizes and lower consumption of mobile phases, and better compatibility with MS, etc. Although its use was not so extended initially, in the last years new and interesting applications have appeared which deserve to be carefully considered. The aim of this review is therefore to provide an updated and critical survey of different nano-LC applications in analytical chemistry.
The major flavanone-7-O-glycoside constituents in citrus fruit juices (naringin, hesperidin, neohesperidin, narirutin, and eriocitrin) were separated as diastereomers by multidimensional liquid chromatography. The method consisted of coupling two HPLC columns: a reversed-phase (RP(18)) column was used for the separation of flavanone glycosides, which were, then, individually switched into a carboxymethylated beta-cyclodextrin (beta-CD)-based column and resolved as the corresponding stereoisomers. The method was used for the full analysis of flavanone glycosides in fresh hand-squeezed and commercial fruit juices by combining the quantitative estimation with the diastereomeric analysis. Quantitative data were in general consistent with previously reported data in this field. CC-LC isomer analysis was carried out by coupling the beta-CD column with a mass spectrometer operated with negative ion electrospray ionization (ESI-MS). The results showed that hesperidin was present in orange juices almost exclusively as the 2S isomer, whereas narirutin had mainly the 2R configuration. In grapefruit juices (2S)-naringin prevailed with the respect to the 2R isomer, whereas the opposite was true for narirutin. Lemon juices contained eriocitrin stereoisomers in equal amount (50% each), but hesperidin was almost exclusively found as the 2S isomer. Significant differences of the diastereomeric ratios were observed between freshly squeezed juices and juices from commercial sources.
A simple and cost-effective laboratory-made liquid junction interface was used for coupling of CE with MS. In this device the capillary column and the spray tip were positioned in the electrode vessel containing appropriate spray liquid. The electrospray potential was applied on the electrode inside the liquid junction. A stable electrospray was produced at nanoliter per minute flow rates generated in the emitter tip without using an external pump. This arrangement provided high durability of the spray tip and independent optimization of the CE separation (use of coated capillaries) and ESI conditions. CE-MS analysis of mixtures of drugs, peptides, tryptic digests of proteins and biological fluids was optimized with respect to the effects of the distance between the separation capillary and electrospray tip and pressure applied on the liquid junction. The sensitivity of the system, in terms of the LOD (base peak monitoring) was below 10 ng/mL for the beta-blocker drugs and below 200 ng/mL for peptide analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.