A novel versatile electrical skin (e-skin) with safeguarding and multisensing properties based on hybrid structures is developed by assembling Ag nanowires (AgNWs), polyester (PET) film with hybrid shear stiffening polymer/polydimethylsiloxane (SST/PDMS) matrix. The hybrid SST/PDMS polymer shows stable configuration. Storage modulus of the SST/PDMS increases from 5.5 kPa to 0.39 MPa when the shear frequency changes from 0.1 to 100 Hz, exhibiting typical rate-dependent behavior. e-Skin functions as a human-monitoring device by detecting various motions such as gentle touching, stroking, elbow bending, as well as speaking. More importantly, due to the shear stiffening characteristic, e-skin with high damping capacity exhibits safeguarding performance, which can dissipate impact force from 720 to 400 N and increase buffer time (from 0.9 to 2 ms). Meanwhile, distinguishable resistance values can reveal the level of harsh impact applied on the e-skin. In addition, the visible thermosensation effect of e-skin similar to chameleon epidermis is convenient for assessing environmental temperature. e-Skin arrays can precisely map the dynamic impact location and pressure distribution. Finally, the high electrical sensitivity and shear stiffening performance are attributed to the disturbance of AgNW effective conductive paths and dynamic BO bonds, respectively.
Based on the measured shape memory alloy (SMA) stress-strain curve and the nonlinear large deformation theory of extensible beams (or rods), the first-order nonlinear governing equations of a SMA cantilever straight rod are established. They consist of a boundary-value problem of ordinary differential equations with a strong nonlinearity, in which seven unknown functions are contained and the arc length of the deformed axis is considered as one of the basic unknown functions. The shooting method combining with the Newton-Raphson iteration method is applied to solve the equations numerically. For a SMA cantilever rod subjected to a transverse uniformly distributed force, the deformation characteristics curves, the maximum strain and the maximum stress distribution curves along the longitudinal direction of rod, and the relation curves between deformation characteristic parameters and transverse uniformly force under different slenderness ratios are obtained. The effects of material nonlinearity, geometrical nonlinearity and slenderness ratio on the tension-bending deformation of the SMA cantilever rod are investigated. The numerical simulation results are in good agreement with the experimental data from the literature, verifying the soundness of the entire numerical simulation scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.