Plantaricin is a kind of bacteriocin with broad-spectrum antibacterial activity on several food pathogens and spoilage microorganisms, showing potential in biopreservation applications. However, the low yield of plantaricin limits its industrialization. In this study, it was found that the co-culture of Wickerhamomyces anomalus Y-5 and Lactiplantibacillus paraplantarum RX-8 could enhance plantaricin production. To investigate the response of L. paraplantarum RX-8 facing W. anomalus Y-5 and understand the mechanisms activated when increasing plantaricin yield, comparative transcriptomic and proteomic analyses of L. paraplantarum RX-8 were performed in mono-culture and co-culture. The results showed that different genes and proteins in the phosphotransferase system (PTS) were improved and enhanced the uptake of certain sugars; the key enzyme activity in glycolysis was increased with the promotion of energy production; arginine biosynthesis was downregulated to increase glutamate mechanism and then promoted plantaricin yield; and the expression of several genes/proteins related to purine metabolism was downregulated and those related to pyrimidine metabolism was upregulated. Meanwhile, the increase of plantaricin synthesis by upregulation of plnABCDEF cluster expression under co-culture indicated that the PlnA-mediated quorum sensing (QS) system took part in the response mechanism of L. paraplantarum RX-8. However, the absence of AI-2 did not influence the inducing effect on plantaricin production. Mannose, galactose, and glutamate were critical metabolites and significantly simulate plantaricin production (p < 0.05). In summary, the findings provided new insights into the interaction between bacteriocin-inducing and bacteriocin-producing microorganisms, which may serve as a basis for further research into the detailed mechanism.
On the basis of PVA-CS, which is incorporated with Bifidocin A, anti-microbial biodegradable films were prepared, characterized by their abilities to control the Bifidocin A’s total release rate into foods as needed for packaging of active foods. This study aimed to explore the anti-microbial effects and release kinetics of active substances in polyvinyl alcoholchitosan (PVA-CS) particle composite films added with Bifidocin A. Pseudomonas fluorescens was used as indicator bacteria to evaluate the anti-microbial activity of the films. Fick’s law, power law and negative exponential growth model were applied to further study the release kinetics of Bifidocin A. The results revealed that the composite films of PVA and CS had better mechanical properties and anti-microbial activity when the content of Bifidocin A was 50% with 1:1 PVA/CS, but it impairs the structure of the film, which can be resolved by including a suitable amount of grycerol. The anti-microbial was released faster at higher temperature and concentration of Bifidocin A, and the diffusion coeffcients increased significantlywith the increase of temperature and concentration. According to the thermodynamic parameters, the release of Bifidocin A was endothermic and spontaneous. High correlation factors (R2 > 0.99) were acquired by fitting the release data of the Bifidocin A with the negative exponential growth model. The potential of Bifidocin A to deliver from the films into the food analog appropriately at low temperatures favored the obtained active films to be applied on food packaging, especially suitable for refrigerated foods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.