This study aimed to investigate and compare the effects of exogenous glycinebetaine (GB) and trehalose (TR) on the biological responses of duckweed (Lemna gibba L.) against cadmium (Cd) accumulation. Duckweed samples were exposed to 0.5, 1, and 3 mM of Cd for 6 days in the presence and absence of GB (0.5, 1, 2, and 5 mM) or TR (0.5, 1, 2, and 5 mM). The accumulation of Cd, GB, and TR were investigated, and their influence on the rates of lipid peroxidation, photosynthetic activity, proline content and enzymatic antioxidant performance was examined. Two-way ANOVA showed that exposure to Cd and/or GB or TR caused an increase in Cd accumulation concentration dependently. TR had significant effects on Cd accumulation. The application of 0.5 mM TR increased Cd accumulation, whereas 5 mM decreased Cd accumulation. However, Cd accumulation was not significantly affected by the presence of GB. Cd concentration alone or in combination with GB or TR had a significant effect on lipid peroxidation, photosynthetic activity, proline content, and antioxidant enzyme activities. In addition, statistically significant GB-Cd and TR-Cd interactions were observed. We conclude that both GB and TR play protective roles against Cd stress in aquatic plants. The use of a low level of TR (i.e., 0.5 mM) may be more useful than GB in phytoremediation studies.
The accumulation of arsenic (As) and physiological responses of Lemna minor L. under different concentration (0, 1, 4, 16 and 64 microM) and duration (1, 2, 4 and 6 days) of two species As, NaAsO(2) and Na(2)HAsO(4).7H(2)O, were studied in hydroponics. The accumulation of both As species depended on As concentration and exposure duration. The highest accumulation of As was found as 17408 and 8674 microg g(-1), for plants exposed to 64 microM of As(III) and As(V), respectively, after 6 days. Two-way ANOVA analyses indicated that, for plants exposed to arsenite (As(III)), exposure duration had a greater effect than concentration on As accumulation. Conversely, exposure concentration had a greater effect on As accumulation in plants exposed to arsenate (As(V)). Arsenic exposure levels, approaching 16 microM for As(III) and 64 microM for As(V), did not significantly affect EC values. Beyond these exposure concentrations, EC values increased in a manner that depended on duration. Significant effect of As(III) on lipid peroxidation was observed at 1 microM application whereas, this effect started to be significant after an exposure to 16 microM As(V). For both As(III) and As(V), photosynthetic pigment levels slightly increased for the first day with respect to the control, followed by a gradual decline at higher concentrations and durations. An increase in protein content and enzyme activity was observed at moderate exposure conditions, followed by a decrease. Significant positive correlations were determined between accumulated As and ion leakage and lipid peroxidation. Negative correlations were found between accumulated As and total chlorophyll and protein content. Our results suggested that exposure duration and concentration had a strong synergetic effect on antioxidant enzyme activity. The findings of the present study may be useful when this plant is used as a phytoremediator in arsenic-polluted water.
Aim: Thyroid diseases related with iodine deficiency are observed commonly in our country and in the world. In this study, we aimed to investigate iodine deficiency in urine and selenium, zinc, copper or molybdenum deficiency which may accompany this in children aged between 6 and 12 years in two schools in the province of Hatay (endemic goitre region). Material and Methods:This study is a case-control field-study in which students aged between 6 and 12 years were included. One hundred fourteen subjects from the village of Tanışma related to the center of our province and 100 subjects from the city center of Hatay (Antakya) were included in the study. Iodine, selenium, zinc, copper and molybdenum levels were measured in the urine samples of the students included in the study. Results:Iodine deficiency was found with a severe (5%), moderate (18.4%) and mild degree (43%), respectively in the village of Tanışma. Mild iodine deficiency (7%) was found in the center of Hatay. No moderate and severe iodine deficiency was found in the control group. A significant difference was found between the groups in terms of urine iodine excretion (p<0.001). A significant correlation was found between the levels of iodine, selenium, zinc and molybdenum (p<0.05). A moderately positive correlation was found between iodine and selenium (p<0.001). A moderately positive correlation was found between iodine and zinc levels (p<0.001) and a weak correlation was found between iodine and molybdenum (p<0.01). No significant correlation was found between iodine level and copper level (p>0.05).Conclusions: Selenium and zinc deficiency may accompany iodine deficiency. Selenium and zinc deficiency should be considered in individuals who are found to have iodine deficiency especially in endemic goitre regions. (Türk Ped Arş 2014; 49: 111-6)
The effects of the homogenization process on the structures and dielectric properties of pure and Nb-doped BaTiO ceramics have been investigated using an ultrasonic homogenization and conventional mechanical methods. The reagents were homogenized using an ultrasonic processor with high-intensity ultrasonic waves and using a compact mixer-shaker. The components and crystal types of the powders were determined by Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analyses. The complex permittivity (ε, ε″) and AC conductivity (σ') of the samples were analyzed in a wide frequency range of 20Hz to 2MHz at room temperature. The structures and dielectric properties of pure and Nb-doped BaTiO ceramics strongly depend on the homogenization process in a solid-state reaction method. Using an ultrasonic processor with high-intensity ultrasonic waves based on acoustic cavitation phenomena can make a significant improvement in producing high-purity BaTiO ceramics without carbonate impurities with a small dielectric loss.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.