Backgrounds: Intolerable toxicity and unsatisfactory therapeutic effects are still big problems retarding the use of chemotherapy against cancer. Nano-drug delivery system promised a lot in increasing the patients' compliance and therapeutic efficacy. As a unique nano-carrier, supermolecular aggregation nanovehicle has attracted increasing interests due to the following advantages: announcing drug loading efficacy, pronouncing in vivo performance and simplified production process. Methods: In this study, the supermolecular aggregation nanovehicle of bortezomib (BTZ) was prepared to treat breast cancer. Results: Although many supermolecular nanovehicles are inclined to disintegrate due to the weak intermolecular interactions among the components, the BTZ supermolecules are satisfying stable. To shed light on the reasons behind this, the forces driving the formation of the nanovehicles were detailed investigated. In other words, the interactions among BTZ and other two components were studied to characterize the nanovehicles and ensure its stability. Conclusions: Due to the promising tumor targeting ability of the BTZ nanovehicles, the supermolecule displayed promising tumor curing effects and negligible systemic toxicity.
Salvia miltiorrhiza Bge. (Danshen) is widely used to improve blood circulation and the dredge meridian in traditional Chinese medicine. In the present study, we evaluated the effects of dihydrotanshinone I (DHTS), a natural product from Danshen, on chronic high-fat feeding-induced cardiac remodeling and dysfunction. DHTS (25 mg/kg, intraperitoneal) did not affect blood glucose, insulin levels, and glucose intolerance. However, it alleviated diastolic dysfunction induced by the high-fat diet, as indicated by the increase in the ratio of peak early filling velocity to peak late filling velocity of the mitral and suppression of the extension of the isovolumic relaxation phase of the left ventricle. Further investigations revealed that DHTS ameliorated high-fat induced cardiac hypertrophy in mice and suppressed insulin-induced enlargement of cardiomyocytes in vitro. In neonatal cardiomyocytes, DHTS restored insulin-induced suppression of CCAAT/enhancer-binding protein beta-2 isoform (CEBPβ) and the phosphorylation of glycogen synthase kinase-3β (GSK3β) and extracellular signal-regulated kinase (ERK). Taken together, our results indicated that DHTS ameliorated cardiac hypertrophy and diastolic dysfunction in high-fat-fed mice, probably through the inhibition of insulin-induced suppression of CEBPβ and phosphorylation of GSK3β and ERK in cardiomyocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.