Modifying the rhizosphere microbiome through targeted plant breeding is key to harnessing positive plant-microbial interrelationships in cropping agroecosystems. Here, we examine the composition of rhizosphere bacterial communities of diverse Brassica napus genotypes to identify: (1) taxa that preferentially associate with genotypes, (2) core bacterial microbiota associated with B. napus, (3) heritable alpha diversity measures at flowering and whole growing season, and (4) correlation between microbial and plant genetic distance among canola genotypes at different growth stages. Our aim is to identify and describe signature microbiota with potential positive benefits that could be integrated in B. napus breeding and management strategies. Rhizosphere soils of 16 diverse genotypes sampled weekly over a 10-week period at single location as well as at three time points at two additional locations were analyzed using 16S rRNA gene amplicon sequencing. The B. napus rhizosphere microbiome was characterized by diverse bacterial communities with 32 named bacterial phyla. The most abundant phyla were Proteobacteria, Actinobacteria, and Acidobacteria. Overall microbial and plant genetic distances were highly correlated (R = 0.65). Alpha diversity heritability estimates were between 0.16 and 0.41 when evaluated across growth stage and between 0.24 and 0.59 at flowering. Compared with a reference B. napus genotype, a total of 81 genera were significantly more abundant and 71 were significantly less abundant in at least one B. napus genotype out of the total 558 bacterial genera. Most differentially abundant genera were Proteobacteria and Actinobacteria followed by Bacteroidetes and Firmicutes. Here, we also show that B. napus genotypes select an overall core bacterial microbiome with growth-stage-related patterns as to how taxa joined the core membership. In addition, we report that sets of B. napus core
a b s t r a c tIntegrating fungal-based ecosystem services into forest management planning and policy-making requires quantitative knowledge of the yields of fungal sporocarps and their environmental drivers. The aim of this study was to predict edible mushroom yield in Pinus pinaster forests of Central Spain, based on a 17-year data series. Two-stage mixed-effects models were used to examine the effect of predictors on mushroom occurrence and yield separately with the aim of providing further insight into the ecological system. Changes in seasonal precipitation represented the main weather-related driver affecting sporocarp emergence and production, since they were both positively influenced by late summer and early autumn precipitation. Soil acidity positively influenced Lactarius yield. Stand age and sandy soils showed a negative influence on mushroom production. The diversity of drivers became more apparent at the fungal species level. The models can be used for predicting the production of edible fungi under different meteorological and site conditions.
The plant microbiome has been recently recognized as a plant phenotype to help in the food security of the future population. However, global plant microbiome datasets are insufficient to be used effectively for breeding this new generation of crop plants. We surveyed the diversity and temporal composition of bacterial and fungal communities in the root and rhizosphere of
Brassica napus
, the world's second largest oilseed crop, weekly in eight diverse lines at one site and every three weeks in sixteen lines, at three sites in 2016 and 2017 in the Canadian Prairies. We sequenced the bacterial 16S ribosomal RNA gene generating a total of 127.7 million reads and the fungal internal transcribed spacer (ITS) region generating 113.4 million reads. 14,944 unique fungal amplicon sequence variants (ASV) were detected, with an average of 43 ASVs per root and 105 ASVs per rhizosphere sample. We detected 10,882 unique bacterial ASVs with an average of 249 ASVs per sample. Temporal, site-to-site, and line-driven variability were key determinants of microbial community structure. This dataset is a valuable resource to systematically extract information on the belowground microbiome of diverse
B. napus
lines in different environments, at different times in the growing season, in order to adapt effective varieties for sustainable crop production systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.