Highlights d Liquid-liquid phase separation drives mitotic implantation of transcription factor Pros d Mitotic retention is crucial for Pros to promote terminal neuronal differentiation d Pros condensates and expands H3K9me3 + heterochromatin domains in neurons d Pros recruits and concentrates HP1a into phase-separated condensates
Multiple CPUs and GPUs are integrated on the same chip to share memory, and access requests between cores are interfering with each other. Memory requests from the GPU seriously interfere with the CPU memory access performance. Requests between multiple CPUs are intertwined when accessing memory, and its performance is greatly affected. The difference in access latency between GPU cores increases the average latency of memory accesses. In order to solve the problems encountered in the shared memory of heterogeneous multi-core systems, we propose a step-by-step memory scheduling strategy, which improve the system performance. The step-by-step memory scheduling strategy first creates a new memory request queue based on the request source and isolates the CPU requests from the GPU requests when the memory controller receives the memory request, thereby preventing the GPU request from interfering with the CPU request. Then, for the CPU request queue, a dynamic bank partitioning strategy is implemented, which dynamically maps it to different bank sets according to different memory characteristics of the application, and eliminates memory request interference of multiple CPU applications without affecting bank-level parallelism. Finally, for the GPU request queue, the criticality is introduced to measure the difference of the memory access latency between the cores. Based on the first ready-first come first served strategy, we implemented criticality-aware memory scheduling to balance the locality and criticality of application access.
Multi-core processors integrate with multiple computing units on one chip. This technology is increasingly mature, and communication between cores has become the largest research hotspot. As the number of cores continues to increase, the humble bus structure can no longer play the role of multi-core processors. Network on chip (NoC) connects components through routing, which greatly enhances the efficiency of communication. However, the communication power it consumes and network latency are issues that cannot be ignored. An efficient mapping algorithm is an effective method to reduce the communication power and network latency. This paper proposes a mapping method. First, the task is divided depending on the scale of the task. When the task scale is small, to reduce the communication distance between resource nodes, a given NoC substructure is selected to map the task; when the task scale is large, to reduce the communication between tasks, the tasks are clustered and tasks with dependencies are divided into the same resource node. Then combine with an improving ant colony algorithm (ACO) for mapping. The method proposed is being experimentally verified on NoC platforms of different scales. The experimental results show that the method proposed is very effectual for reducing communication power and network latency during NoC mapping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.