Dehydroxylated MCM-41 and SBA-15 surfaces were modified by the grafting of two different titanocene complexes ([Ti(eta(5)-C(5)H(4)Me)(2)Cl(2)] and [Ti{Me(2)Si(eta(5)-C(5)Me(4))(eta(5)-C(5)H(4))}Cl(2)]) to give new materials, which have been characterized by powder X-ray diffraction, X-ray fluorescence, nitrogen gas sorption, MAS-NMR spectroscopy, thermogravimetry, SEM, and TEM. The toxicity of the resulting materials toward human adenocarcinoma HeLa, human myelogenous leukemia K562, human malignant melanoma Fem-x, and normal immunocompetent cells, such as peripheral blood mononuclear cells PBMC has been studied. Estimation of the number of particles per gram of material led to the calculation of Q(50) values for these samples, which is the number of particles required to inhibit normal cell growth by 50%. In addition, M(50) values (quantity of material needed to inhibit normal cell growth by 50%) of the studied surfaces is also reported. Nonfunctionalized MCM-41 and SBA-15 did not show notable antiproliferative activity, whereas functionalization of these materials with different titanocene based anticancer drugs led to very promising antitumoral activity. The best Q(50) values correspond to titanocene functionalized MCM-41 surfaces (MCM-41/[Ti(eta(5)-C(5)H(4)Me)(2)Cl(2)] (1) and MCM-41/[Ti{Me(2)Si(eta(5)-C(5)Me(4))(eta(5)-C(5)H(4))}Cl(2)] (2)) with Q(50) values between 3.8+/-0.6x10(8) and 24.5+/-3.0x10(8) particles. Titanocene functionalized SBA-15 surfaces (SBA-15/[Ti(eta(5)-C(5)H(4)Me)(2)Cl(2)] (3) and SBA-15/[Ti{Me(2)Si(eta(5)-C(5)Me(4))(eta(5)-C(5)H(4))}Cl(2)] (4)) gave higher Q(50) values, showing lower activity from 73.2+/-9.9x10(8) to 362+/-7x10(8) particles. The best response of the studied materials in terms of M(50) values was observed against Fem-x (309+/-42 microg for 4) and K562 (338+/-18 microg for 2), whereas moderate activities were observed in HeLa cells (from 508+/-63 microg of 2 to 912+/-10 microg of 1). In addition, the analyzed surfaces presented only marginal activity against unstimulated and stimulated PBMC, showing a slight selectivity on human cancer cells. Comparison of the in vitro cytotoxicity in solution of the titanocene complexes [Ti(eta(5)-C(5)H(4)Me)(2)Cl(2)] and [Ti{Me(2)Si(eta(5)-C(5)Me(4))(eta(5)-C(5)H(4))}Cl(2)] and the corresponding titanocene functionalized materials is also described.
The methanolic extract of the wild edible mushroom Cantharellus cibarius Fr. (chanterelle) was analyzed for in vitro antioxidative, cytotoxic, antihypertensive and antibacterial activities. Various primary and secondary metabolites were found. Phenols were the major antioxidant components found in the extract (49.8 mg g(-1)), followed by flavonoids, whose content was approximately 86% of the total phenol content. Antioxidant activity, measured by four different methods, was high for inhibition of lipid peroxidation (EC50 = 1.21 mg mL(-1)) and chelating ability (EC50 = 0.64 mg mL(-1)). The antioxidant activity of the C. cibarius methanol extract was achieved through chelating iron compared to hydrogen atom and/or electron transfer. The extract showed good selectivity in cytotoxicity on human cervix adenocarcinoma HeLa, breast carcinoma MDA-MB-453 and human myelogenous leukemia K562, compared to normal control human fetal lung fibroblasts MRC-5 and human lung bronchial epithelial cells BEAS-2B. The extract had inhibitory activity against angiotensin converting I enzyme (ACE) (IC50 = 0.063 mg mL(-1)). The extract revealed selective antimicrobial activity against Gram-positive bacteria with the highest potential against E. faecalis. The medicinal and health benefits, observed in wild C. cibarius mushroom, seem an additional reason for its traditional use as a popular delicacy food.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.