Living materials are worked as an inside collaborative system that could naturally respond to changing environmental conditions. The regulation of bioelectronic processes in living materials could be effective for collecting biological signals and detecting biomarkers. Here, we constructed a living material with conjugated polymers poly[3-(3′-
N
,
N
,
N
-triethylamino-1′-propyloxy)-4-methyl-2,5-thiophene chloride] (PMNT) and
Shewanella oneidensis
MR-1 biofilm. In addition, the living material was integrated as a flexible bioelectronic device for lactate detection in physiological fluids (sweat, urine, and plasma). Owing to the electroconductivity of conjugated polymers, PMNT could optimize the bioelectronic process in the living material. The collected electrical signal could be wirelessly transferred to a portable smartphone for reading and analyzing. Because lactate is also a biomarker for cancer treatment, the flexible bioelectronic device was further used to detect and count the cancer cells. The proof of the bioelectronic device using conductive polymer–based living material exhibits promising applications in the next-generation personal health monitoring systems.
Bioelectronics is an interdisciplinary field of research that aims to establish a synergy between electronics and biology. Contributing to a deeper understanding of bioelectronic processes and the built bioelectronics systems,...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.