The objective of this study is to evaluate the modified performance of concrete with mixing of iron ore tailings in order to solve the shortage of natural sand and make full use of industrial waste. Firstly, the raw materials of mixing were analyzed, and the test ratio was determined. Secondly, the workability and mechanical property of concrete specimens with different amounts of iron ore tailings as replacement were tested. Results show that 35% replacement of natural aggregate by iron ore tailings is optimal. Finally, tests of impermeability, frost resistance, and carbonation resistance were further performed for the concrete specimens with optimal amount of iron ore tailings. The compression performance of the specimens after a durability test was determined. The change in the mechanical properties of the specimens was obtained after seepage, freezing-thawing, and carbonation. Findings showed that the performance of the concrete with 35% replacement of iron ore tailings is basically equivalent to that of natural sand concrete. Hence, it can be utilized in engineering applications.
Mine disasters, such as large deformation, floor heave, and roof fall, occur extremely easily in weakly consolidated soft rock strata in western China, posing enormous challenges to traditional anchorage support design. To avoid tensile failure of bolts as a result of the superposition effect of stress accumulation, a segmentally yieldable anchorage support, taking into consideration the different failure zones in surrounding rock, is presented in this paper. First, load transfer mechanisms and the process of anchorage failure are analyzed for end anchorage, full-length anchorage, and segmentally yieldable anchorage based on numerical pull-out tests. Results show that the load transfer follows a multipeak chain-like trend in the case of multipoint segmental anchorage, and that the peaks of stress attenuate slowly. Therefore, the proposed anchorage type can leverage the shear strength effectively. Furthermore, numerical models for the applications of the aforementioned three different anchoring modes to weakly consolidated soft strata are established. Results indicate that segmentally yieldable anchorage can withstand larger tensile deformation and surrounding rock deformation. Moreover, the bolt shows higher strength reservation. A combination of these characteristics is conducive to controlling deformation and damage during roadway excavation.
Abstract:To evaluate the strength attenuation law of soft rock in the western mining area of China, we established an evolution model for the strength parameters of soft mudstone at the post-peak stage by employing a tri-linear strain softening model. In the model, a stiffness degradation coefficient and a softening modulus coefficient were introduced to take into account the stiffness degradation, and the subsequent yield surfaces at post-peak stage were all assumed to meet the Mohr-Coulomb yield criterion. Furthermore, attenuation laws of stiffness and strength parameters of soft mudstone were analyzed according to an engineering case. Finally, the model's accuracy was verified by comparison of results from numerical calculation and tri-axial compression tests. Results showed that the attenuation of the friction angle was dominated mainly by the instantaneous stress states and damage features, while the attenuation law of cohesion was also related to the plastic behavior. The degradation rates of strength parameters decreased with increasing confining pressure and the friction angle tended towards its initial value. Residual strengths were also enhanced with increasing confining pressure. The results indicate that the evolution model can accurately describe the strain softening behavior of soft rock.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.