INTRODUCTION: At present, the common telemedicine service quality evaluation methods can not obtain the key evaluation indicators, which leads to the low accuracy and low user satisfaction. OBJECTIVES: This paper constructs a telemedicine service quality evaluation model based on machine vision technology. METHODS: Machine vision technology is used to obtain telemedicine service information, preliminarily select service quality assessment indicators, complete the selection of indicators, build a telemedicine service quality assessment indicator system, adopt subjective and objective combination method to calculate the weight of service quality assessment indicators, and combine matter element analysis method to build a telemedicine service quality assessment model. RESULTS: The experimental results show that the Cronhach a is higher than 0.7, the Barthel index is higher than 90, and the satisfaction of many users is more than 90%. CONCLUSION: The proposed method solves the problems existing in the current method and lays a foundation for the development of telemedicine service technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.