We report on a significant power conversion efficiency improvement of perovskite solar cells from 8.81% to 10.15% due to insertion of an ultrathin graphene quantum dots (GQDs) layer between perovskite and TiO2. A strong quenching of perovskite photoluminescence was observed at ∼760 nm upon the addition of the GQDs, which is pronouncedly correlated with the increase of the IPCE and the APCE of the respective cells. From the transient absorption measurements, the improved cell efficiency can be attributed to the much faster electron extraction with the presence of GQDs (90-106 ps) than without their presence (260-307 ps). This work highlights that GQDs can act as a superfast electron tunnel for optoelectronic devices.
Cellular imaging after transplantation may provide important information to determine the efficacy of stem cell therapy. We have reported that graphene quantum dots (GQDs) are a type of robust biological labeling agent for stem cells that demonstrate little cytotoxicity. In this study, we examined the interactions of GQDs on human neural stem cells (hNSCs) with the aim to investigate the uptake and biocompatibility of GQDs. We examined the mechanism of GQD uptake by hNSCs and investigated the effects of GQDs on the proliferation, metabolic activity, and differentiation potential of hNSCs. This information is critical to assess the suitability of GQDs for stem cell tracking. Our results indicated that GQDs were taken up into hNSCs in a concentration- and time-dependent manner via the endocytosis mechanism. Furthermore, no significant change was found in the viability, proliferation, metabolic activity, and differentiation potential of hNSCs after treatment with GQDs. Thus, these data open a promising avenue for labeling stem cells with GQDs and also offer a potential opportunity to develop GQDs for biomedical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.