This article is based on the relocation project of the 330 kV overhead line in Xi’an, China. In this paper, the soil settlement under different jacking depths was calculated by using the modified Peck’s formula. Meanwhile, by modeling in ABAQUS, the jacking process of a single-chamber double-line large diameter pipeline under different soil conditions was simulated, and the ground deformation data under the different simulated working conditions were obtained. The results of the two methods were compared with the construction monitoring results, and it was found that the finite element simulation results were closer to the actual results. The control variable method was used in the analysis of the surface soil deformation law to analyze the effect of different soil parameters and pipe jacking depths on surface soil deformation. Finally, the best soil conditions applicable to single-chamber double-line large diameter pipe jacking construction were obtained through comparative analysis. The results show that (1) when using double-line construction, the maximum surface settlement under different soil conditions is located 11–15 m from the centerline of the soil above the pipeline, the minimum settlement location is inside the isolation pile, and with the increase in jacking distance, the settlement at the same section of the surface will gradually decrease and finally produce a small uplift. (2) In the first jacking, the settlement of powder clay is the largest, and the maximum settlement points in the surface section are more distributed. The maximum settlement value is approximately 11.66 mm. The settlement of powder soil is the smallest but produces a certain uplift deformation, and its maximum settlement is more concentrated in the surface section. After the comparison of deformation and soil parameters, loess-like soil is more suitable for single-compartment double-line large diameter pipe jacking construction. (3) When the top pipe burial depth changes, the greater the burial depth is, the smaller the settlement but the greater the lateral influence range. In the soil parameters, the modulus of elasticity only changes 3 MPa, and the settlement change value is approximately 5 mm. By changing the parameters, it can be obtained that the larger the modulus of elasticity of the soil is, the smaller its deformation. The larger the internal friction angle of the soil is, the smaller its deformation, but the maximum value of settlement change is only 1.7 mm, which means that the change in the internal friction angle has little effect on the soil deformation.
To reveal the effect pattern of expressways on regional soil moisture, in this study, using trend analysis and buffer zone analysis methods, the data of VSWI (vegetation supply water index) in central Zhejiang Province from 2005 to 2016 were extracted from landsat7 satellite data using a single window algorithm, and spatial analysis was used to investigate the law of its differentiation. The results show that the multi-year average is 0.01879, between 0.01035–0.02774, showing a gentle decreasing trend, and there are obvious regional variations in space. We found that the impact of the new expressway and interchange on the VSWI in the buffer zone lasted for more than two years, and the VSWI increased in space farther away from the road, and this trend returned to normal at 8 km. Finally, the development patterns of the VSWI in the buffer zone of the newly established expressway and the interchange are approximately the same.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.