Hydraulic dampers are mainly used to maintain high-speed trains in a stable state when running at high speed. In this paper, an equivalent method for the lifetime of dampers is proposed to establish the relationship between the long-term loading test and the mileage in service condition. The performance degradation of the damper at different temperatures is calculated using the long-term loading test carried out under the corresponding temperature conditions. Arrhenius model is applied to convert the degradation under different temperatures, and the sensitive parameter is selected for the conversion of the damper’s performance degradation under different temperatures. An energy method is proposed to solve the problem of the damper lifetime under different loads, so as to achieve the equivalent of the damper between the long-term load test and the mileage in service condition. Finally, taking the anti-yaw damper of a certain type of high-speed train in China as the research object, the lifetime equivalent method proposed in this paper is applied and the result showed that the anti-yaw damper had remaining service life after 2.4 million kilometers of service.
The rigid catenary system is widely used in tunnels to power electric trains via contact with a pantograph. Due to gravity, the contact wire normally has a sag that may affect the dynamic interaction performance with a pantograph. To reduce the contact wire sag, the most efficient measure is to improve the moment of inertia of the conductor rail, which is used to clamp the contact wire. Six new types of conductor rail with large moments of inertia are developed based on a conventional conductor rail. Then both the static and dynamic analyses are conducted to investigate the performance of the new types of conductor rail with a big moment of inertia. The conductor rail’s 3D solid finite element model is built using a finite element approach. The vertical deflection and the stress distribution are comparatively analyzed among different types of conductor rail. The analysis results indicate that the vertical deflection and maximum stress are significantly reduced when using the conductor rail with a large moment of inertia. The best performance is observed when the conductor rail of case 1 is used. The maximum sag is reduced by 28.37%, and the maximum stress is decreased by 27.76% compared with the conventional conductor. Finally, a pantograph model is included to evaluate the dynamic performance of the conductor rail with large moments of inertia. The results indicate that contact force fluctuation is significantly reduced after the conductor rails with large moments of inertia are presented. The conductor rail of case 1 shows the best performance, which can reduce the contact force standard deviation by 32% and 27% at speeds of 160 km/h and 200 km/h.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.