We study the evolution of periodic nanostructures formed on the surface of diamond by femtosecond laser irradiation delivering 230 fs pulses at 1030 nm and 515 nm wavelengths with a repetition rate of 250 kHz. Using scanning electron microscopy, we observe a change in the periodicity of the nanostructures by varying the number of pulses overlapping in the laser focal volume. We simulate the evolution of the period of the high spatial frequency laser induced periodic surface structures at the two wavelengths as a function of number of pulses, accounting for the change in the optical properties of diamond via a generalized plasmonic model. We propose a hypothesis that describes the origin of the nanostructures and the principal role of plasmonic excitation in their formation during multipulse femtosecond laser irradiation.
We have theoretically investigated how a small fraction of energetic beamed electrons influences the diagnostics of the electron density in hot plasmas, based on the intensity ratio R of the helium-like forbidden line to the intercombination lines. Elaborate calculations of the intensity ratio R have been performed for Ne 8+ ions over the range of electron densities 10 9 -10 13 cm −3 using an electron distribution (model) that includes both Maxwellian isotropic and monoenergetic beam components. By taking into account all important transitions among the 117 magnetic sublevels of the 1s 2 and 1snl (n = 2-4) configurations, a collisional-radiative model has been applied for determining the populations of the upper-magnetic sublevels of lines. The required collision strengths due to both electron components were computed semi-relativistically in the complementary distorted-wave and Coulomb-Bethe methods. The results are given for temperatures T e of the Maxwellian electron component in the range 2-5 × 10 6 K and for kinetic energies e 0 of the monoenergetic electron component between 0.95 and 4 keV. At low T e and e 0 not too high, the anisotropy of the intensity angular distribution of lines is found to have an appreciable effect on the R ratio. The electron density inferred from the intensity ratio R without including the beam effect can be significantly overestimated or underestimated depending upon the emission angle relative to the electron beam direction.
Ablation of copper using multipulse femtosecond laser irradiation with an 800 nm wavelength and 120-fs pulse duration is investigated theoretically. A two-temperature model, which includes dynamic optical and thermal-physical properties, is considered. The numerical results of the material thermal response obtained by varying the pulse number, the separation times between pulses and laser fluences are presented. Our results show that the increasing of pulse number with a separation time less than the thermal relaxation time can dramatically enhance the lattice temperature without a noticeable increase in ablation depth. Therefore, we suggest that the vaporization rate can be augmented in comparison to the melting rate during the same single-phase explosion at the same total fluence where a fast heat accumulation effect plays an important role for cleaner ablation during micromachining.
High spatial frequency laser induced periodic surface structure (HSFL) morphology induced by femtosecond laser with 230 fs pulse duration, 250 kHz repetition rate at 1030 nm wavelength on CVD diamond surface is investigated and discussed. The spatial modification was characterized and analyzed by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and 2D-Fast Fourier Transform (2D-FFT). We studied the effect of pulse number and laser power on the spatial development of nanostructures, and also deduced the impact of thermal accumulation effect on their morphology. A generalized plasmonic model has been used to follow the optical evolution of the irradiated surface and to determine the periodic value of the nanostructures. We suggest that non-thermal melting and plasmonic excitation are the main processes responsible for the formation of HSFL-type nanostructures.
Abstract. We propose a classical Two Temperature Model TTMc where we consider the metal film during the irradiation like an ideal plasma. The numerical results are comparing to those finding by the existing TTM and the experimental data. In our model The cooper is taken as a target irradiated by a single laser pulse with 120 fs at 800 nm wavelength in air room. Our numerical results shown that there are a thermal and non-thermal explosion successively occurs in metal ablation by ultrashort laser pulse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.