Podcasting is an audio content syndication through RSS feeds in the audioblogs. As a new application of audioblogging, podcasting uses the enclosures in RSS feeds for syndication and distribution of audio content to mobile music players on the Web. Despite the advantages of podcasting, there is a need for research that focus on the use of podcasts as learning objects. Incorporating podcasts into e-learning systems require some design and translation work to achieve the pedagogical needs. This paper presents an introductory investigation on approaches to tailor and use audio podcasts as learning objects in learning management systems and learning object repositories.
In this paper the K-means (KM) and the Fuzzy C-means (FCM) algorithms were compared for their computing performance and clustering accuracy on different shaped cluster structures which are regularly and irregularly scattered in two dimensional space. While the accuracy of the KM with single pass was lower than those of the FCM, the KM with multiple starts showed nearly the same clustering accuracy with the FCM. Moreover the KM with multiple starts was extremely superior to the FCM in computing time in all datasets analyzed. Therefore, when well separated cluster structures spreading with regular patterns do exist in datasets the KM with multiple starts was recommended for cluster analysis because of its comparable accuracy and runtime performances.
Partitioning clustering has been one of the key components of data analytics to discover meaningful patterns in agricultural big data, driven by the increasing use of IoT-based technologies in smart farming. In partitioning clustering, the quality of clustering or performances of clustering algorithms are mostly evaluated by using the internal validity indices. In this study, the effectiveness of some widely used internal fuzzy indices are compared using the basic Fuzzy C-Means clustering algorithm. It is especially aimed to investigate changes in the effectiveness of validity indices when fuzzy data points are at different distances from the cluster centers. According to the results obtained on the simulated two-dimensional datasets, Fuzzy Silhouette, Fuzzy Hypervolume and Kwon are the most successful indices in validation of fuzzy clustering results.
In exploratory data analysis and machine learning, partitioning clustering is a frequently used unsupervised learning technique for finding the meaningful patterns in numeric datasets. Clustering aims to identify and classify the objects or the cases in datasets in practice. The clustering quality or the performance of a clustering algorithm is generally evaluated by using the internal validity indices. In this study, an R package named 'fcvalid' is introduced for validation of fuzzy and possibilistic clustering results. The package implements a broad collection of the internal indices which have been proposed to validate the results of fuzzy clustering algorithms. Additionally, the options to compute the generalized and extended versions of the fuzzy internal indices for validation of the possibilistic clustering are also included in the package.
This paper introduces and examines an authoring tool called as "TreeLom" for producing the metadata compatible to IEEE LOM draft standard. TreeLom, has been developed with MS .NET framework technology, is an application of XML binding of the LOM. Its tree view editing interface provides rapid data input in building learning object metadata.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.