Background and Aims. Quercitrin (QR; quercetin-3-O-rhamnoside) has been used previously as an antibacterial agent and has been shown to inhibit the oxidation of low-density lipoproteins and prevent an allergic reaction. Furthermore, it was demonstrated that quercitrin exerts protective effects against H 2 O 2 -induced dysfunction in lung fibroblast cells. However, the mechanisms of quercitrin effects on cancer cell proliferation and apoptosis is not well understood. The aim of this study is to investigate the cytotoxic and apoptotic effects of quercitrin and the molecular mechanisms of quercitrin-induced apoptosis in non-small cell lung cancer (NSCLC) cell lines. Methods. Time-and dose-dependent antiproliferative and apoptotic effects of quercitrin determined by WST-1 cell proliferation assay, lactate dehydrogenase (LDH) cytotoxicity assay, determination of nucleosome enrichment factor, changes in caspase-3 activity, loss of mitochondrial membrane potential (MMP) and also the localization of phosphatidylserine in the plasma membrane. Changes in whole genome gene expression levels were examined by Illumina Human HT-12v4 beadchip microarrays.Results. There were significant increases in caspase-3 activity, loss of MMP, and increases in apoptotic cell population in response to quercitrin in A549 and NCI-H358 NSCLC cells in a time-and dose-dependent manner. Conclusion. Our results demonstrated that genes involved in leukocyte transendothelial migration, cell adhesion and phosphatidylinositol signaling system pathways were the most statistically significant pathways in NCI-H358 and A549 cells. These results revealed that quercitrin has antiproliferative and apoptotic effects on lung cancer cells by modulating the immune response. After confirming its anticarcinogenic effects in vivo, quercitrin could be a novel and strong anticancer agent against NSCLC. Ó 2014 IMSS. Published by Elsevier Inc.
Purpose Hesperidin, a glycoside flavonoid, is thought to act as an anti-cancer agent, since it has been found to exhibit both pro-apoptotic and anti-proliferative effects in several cancer cell types. The mechanisms underlying hesperidin-induced growth arrest and apoptosis are, however, not well understood. Here, we aimed to investigate the anti-proliferative and apoptotic effects of hesperidin on non-small cell lung cancer (NSCLC) cells and to investigate the mechanisms involved. Methods The anti-proliferative and apoptotic effects of hesperidin on two NSCLC-derived cell lines, A549 and NCI-H358, were determined using a WST-1 colorimetric assay, a LDH cytotoxicity assay, a Cell Death Detection assay, an AnnexinV-FITC assay, a caspase-3 assay and a JC-1 assay, respectively, all in a time-and dose-dependent manner. As a control, non-cancerous MRC-5 lung fibroblasts were included. Changes in whole genome gene expression profiles were assessed using an Illumina Human HT-12v4 beadchip microarray platform, and subsequent data analyses were performed using an Illumina Genome Studio and Ingenuity Pathway Analyser (IPA). Results We found that after hesperidin treatment, A549 and NCI-H358 cells exhibited decreasing cell proliferation and increasing caspase-3 and other apoptosis-related activities, in conjunction with decreasing mitochondrial membrane potential activities, in a dose-and time-dependent manner. Through a GO analysis, by which changes in gene expression profiles were compared, we found that the FGF and NF-κB signal transduction pathways were most significantly affected in the hesperidin treated NCI-H358 and A549 NSCLC cells. Conclusions Our results indicate that hesperidin elicits an in vitro growth inhibitory effect on NSCLC cells by modulating immune response-related pathways that affect apoptosis. When confirmed in vivo, hesperidin may serve as a novel antiproliferative agent for non-small cell lung cancer.
Quercetin, which is the most abundant bioflavonoid compound, is mainly present in the glycoside form of quercitrin. Although different studies indicated that quercitrin is a potent antioxidant, the action of this compound is not well understood. In this study, we investigated whether quercitrin has apoptotic and antiproliferative effects in DLD-1 colon cancer cell lines. Time and dose dependent antiproliferative and apoptotic effects of quercitrin were subsequently determined by WST-1 cell proliferation assay, lactate dehydrogenase (LDH) cytotoxicity assay, detection of nucleosome enrichment factor, changes in caspase-3 activity, loss of mitochondrial membrane potential (MMP) and also the localization of phosphatidylserine (PS) in the plasma membrane. There were significant increases in caspase-3 activity, loss of MMP, and increases in the apoptotic cell population in response to quercitrin in DLD-1 colon cancer cells in a time-and dose-dependent manner. These results revealed that quercitrin has antiproliferative and apoptotic effects on colon cancer cells. Quercitrin activity supported with in vivo analyses could be a biomarker candicate for early colorectal carcinoma.
Purpose Propranolol, a non-selective b-adrenergic receptor blocker, has been used for the treatment of the patients with hypertension for more than 50 years. There are several in vitro and in vivo evidences that b-adrenergic receptor antagonists inhibit proliferation and angiogenesis and also increase apoptosis in breast, skin, and colon cancers. The aim of this study was to investigate the cytotoxic and apoptotic effects of propranolol and the genes involved in propranololinduced apoptosis in multiple myeloma cells. Methods Time-dependent antiproliferation and apoptotic effects of propranolol were subsequently determined by MTT cell proliferation assay, changes in caspase-3 activity, loss of mitochondrial membrane potential (MMP), and also the localization of phosphatidylserine in the plasma membrane. Changes in expression levels of NF-JB pathway were examined by qRT-PCR array.Results IC50 values of propranolol on U266 cells were calculated as 141, 100, and 75 lM after 24-, 48-, and 72-h propranolol exposure, respectively. There were significant increases in caspase-3 activity, loss of MMP, and increases in apoptotic cell population in response to propranolol in U266 cells in a time-and dose-dependent manner. There were increases in expression levels of BCL10, TRAF family members, interleukins, TLR1-4, TNFRSF10B, NFjB, and the inhibitors of NF-jB genes, and significant decreases in expression levels of Bcl-2 in response to propranolol treatment were observed. Conclusion These results revealed that propranolol has antiproliferative and apoptotic effects on multiple myeloma cells. Being supported with in vivo analyses, propranolol can be a good and economical way to treat multiple myeloma patients.
Several polymorphisms in the DNA repair gene are thought to have significant effects on cancer risk. In this study, we investigated the association of the polymorphisms in the DNA repair genes, XRCC1 Arg399Gln, XRCC3 Thr241Met, XPD Lys751Gln, XPG Asp1104His, APE1 Asp148Glu, and HOGG1 Ser326Cys, with endometrium cancer risk. Two hundred and sixty-two women were included in the study. Endometrial biopsy was performed, and on the basis of diagnosis and histological examination, women were divided into two groups: a control group (n=158) and an endometrial cancer group (n=104). Genotypes were determined by PCR-RFLP assays in endometrial carcinoma patients and age-matched controls. In this study, we found that the frequencies of Glu+ and Asp/Glu genotypes in APE, Gln/Gln genotype of XRCC1, Met/Met genotype of XRCC3, Cys+ and Ser/Cys genotypes of HOGG1, His+ and Asp/His genotypes of XPG, and Gln+ and Gln/Gln genotypes of XPD are more prevalent in patients than controls. Frequencies of Thr/Thr genotype in XRCC3 were increased in controls compared with patients and seem to be protected from endometrial cancer. Our findings suggest that XRCC1, XRCC3, XPD, XPG, APE1, and HOGG1 genetic variants may be associated with endometrial cancer in Turkish women.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.