Abstract-In this mixed method research study, the effect of gamification strategies on students' cognitive load levels and achievements was examined along with student opinions about gamification. The topic of spreadsheets was covered for six weeks in a sixth grade information technologies and software course. The sample consisted of a control group of 48 students who were trained via traditional procedures and an experimental group of 46 students who were trained using gamification strategies. Independent sample t-test, Mann-Whitney U test and descriptive analysis were applied to the data. A significant difference was found between the two groups that indicated higher achievement in the experimental group. When comparing cognitive load levels, the experimental group also scored higher than the control group. Interviews indicated that the students had positive views about gamification strategies.
BackgroundFilamentous fungi including Aspergillus niger are cell factories for the production of organic acids, proteins and bioactive compounds. Traditionally, stirred-tank reactors (STRs) are used to cultivate them under highly reproducible conditions ensuring optimum oxygen uptake and high growth rates. However, agitation via mechanical stirring causes high shear forces, thus affecting fungal physiology and macromorphologies. Two-dimensional rocking-motion wave-mixed bioreactor cultivations could offer a viable alternative to fungal cultivations in STRs, as comparable gas mass transfer is generally achievable while deploying lower friction and shear forces. The aim of this study was thus to investigate for the first time the consequences of wave-mixed cultivations on the growth, macromorphology and product formation of A. niger.ResultsWe investigated the impact of hydrodynamic conditions on A. niger cultivated at a 5 L scale in a disposable two-dimensional rocking motion bioreactor (CELL-tainer®) and a BioFlo STR (New Brunswick®), respectively. Two different A. niger strains were analysed, which produce heterologously the commercial drug enniatin B. Both strains expressed the esyn1 gene that encodes a non-ribosomal peptide synthetase ESYN under control of the inducible Tet-on system, but differed in their dependence on feeding with the precursors d-2-hydroxyvaleric acid and l-valine. Cultivations of A. niger in the CELL-tainer resulted in the formation of large pellets, which were heterogeneous in size (diameter 300–800 μm) and not observed during STR cultivations. When talcum microparticles were added, it was possible to obtain a reduced pellet size and to control pellet heterogeneity (diameter 50–150 μm). No foam formation was observed under wave-mixed cultivation conditions, which made the addition of antifoam agents needless. Overall, enniatin B titres of about 1.5–2.3 g L−1 were achieved in the CELL-tainer® system, which is about 30–50% of the titres achieved under STR conditions.ConclusionsThis is the first report studying the potential use of single-use wave-mixed reactor systems for the cultivation of A. niger. Although final enniatin yields are not competitive yet with titres achieved under STR conditions, wave-mixed cultivations open up new avenues for the cultivation of shear-sensitive mutant strains as well as high cell-density cultivations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.