The sinus node (SN) is the heart’s primary pacemaker and has a unique expression of pacemaking ion channels and immune cell markers. The role of microribonucleic acids (miRNAs) in control of ion channels and immune function of the sinus node is not well understood. We have recently shown that hsa-miR-486-3p downregulates the main pacemaking channel HCN4 in the SN. In addition, we recently demonstrated that immune cells are significantly more abundant in the SN compared to the right atrium. The aim of this study was to validate the previously predicted interactions between miRNAs and mRNAs of key Ca2+ ion channels (involved in peacemaking) and mRNA of TPSAB1—(a mast cells marker) using luciferase assay. We now show that miR-486 significantly downregulates Cav1.3, Cav3.1, and TPSAB1-mediated luciferase activity, while miR-938 significantly downregulates only TPSAB1-mediated luciferase activity. This makes miR-486-3p a potential therapeutic target in the treatment of SN dysfunctions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.