On the basis of a well-developed bench-scale pyrolysis model that relates material composition to flammability, this paper applied mathematical simulations to explore the model sensitivity for the prediction of fire behavior of composite materials. A pyrolysis model for poly(lactic acid) blended with melamine and ammonium polyphosphate as the reference material was selected as the case for analysis. The model input parameters for simulations include the heat of reaction, apparent activation energy, and pre-exponential factor of 15 reactions, as well as the thermal conductivity, emissivity coefficient, absorption coefficient, and density of 17 condensed-phase components. Each reaction-related or component-related parameter was adjusted from 80% of the model value to 120% with a 5% or 10% gradient. Finally, 826 simulation cases in total were calculated for analysis. Both the mass loss rate and the heat release rate of each case were calculated to characterize the sensitivity, which showed the same pattern. Finally, seven primary reactions and five key condensed-phase components with high sensitivity were identified. The predicted fire behaviors are highly related to the kinetics of the reactions between virgin components or reactions where virgin components play an important role in, including the pyrolysis of melted poly(lactic acid), the first step in the pyrolysis of melamine, the first step in the pyrolysis of ammonium polyphosphate, the reaction between melted poly(lactic acid) and melamine, the reaction between ammonium polyphosphate and melamine, and further decomposition of the generated new condensed-phase component. Particularly, the activation energy of these reactions is of sensitivity larger than 5% or 15%. The heat of decomposition of pyrolysis of melted poly(lactic acid) also showed a sensitivity of 2%–5%. The pre-exponential factor of all reactions showed a sensitivity of less than 2%, which can be ignored. Inputting the proper density is important for the prediction of fire behavior as the sensitivity is larger than 2%. The sensitivity of the milligram-scale model was also processed and compared. These simulations provided a fundamental understanding of the sensitivity of thermophysical and chemical properties and thus provide advanced insights into fire behavior modeling and new composite material design.
RATIONALE Gas chromatography mass spectrometry (GC‐MS) with electron ionization (EI) is the most widely used analysis technique of gaseous samples, but it may be time‐consuming for online monitoring of mixtures whose concentrations relatively change rapidly. On the contrary, current ionization methods, such as chemical ionization (CI) and proton transfer reaction (PTR), also have some disadvantages such as selectivity. Therefore, appropriate soft ionization sources are searched for rapid online detection. METHODS Hollow electrode capillary plasma ionization (HECPI) is based on single electrode plasma. A hollow capillary was placed as both the electrode and the inlet of the gaseous samples. The ionization source is coupled with a mass spectrometer for performance evaluation. RESULTS Several typical compounds have been tested with HECPI‐mass spectrometer. In this process, the dominant ion peaks of all compounds can be indexed as molecular ion peaks, and the product ions of HECPI are less than that of dielectric barrier discharge ionization (DBDI). Three gaseous samples (linalool, triethylamine, and styrene) with various concentrations have been used to further confirm the performance of this source, and the detection limit of linalool is as low as 10 ppb. CONCLUSIONS HECPI is simple in structure and shows good performance. The results also show that HECPI has the potential to be an effective tool for detecting online gaseous samples rapidly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.