Safety management in hoisting is the key issue to determine the development of prefabricated building construction. However, the security management in the hoisting stage lacks a truly effective method of information physical fusion, and the safety risk analysis of hoisting does not consider the interaction of risk factors. In this paper, a hoisting safety risk management framework based on digital twin (DT) is presented. The digital twin hoisting safety risk coupling model is built. The proposed model integrates the Internet of Things (IoT), Building Information Modeling (BIM), and a security risk analysis method combining the Apriori algorithm and complex network. The real-time perception and virtual–real interaction of multi-source information in the hoisting process are realized, the association rules and coupling relationship among hoisting safety risk factors are mined, and the time-varying data information is visualized. Demonstration in the construction of a large-scale prefabricated building shows that with the proposed framework, it is possible to complete the information fusion between the hoisting site and the virtual model and realize the visual management. The correlative relationship among hoisting construction safety risk factors is analyzed, and the key control factors are found. Moreover, the efficiency of information integration and sharing is improved, the gap of coupling analysis of security risk factors is filled, and effective security management and decision-making are achieved with the proposed approach.
The safety of prestressed steel structures in service has been studied widely. However, traditional safety assessment methods for prestressed steel structures involve few sample points, do not provide accurate predictions, and consume substantial human and material resources. The digital twin technology can be used to monitor the structural behavior, state, and activity of a steel structure throughout its life cycle, which is equivalent to performing a safety assessment of the structure. The purpose of this study is to establish a digital twin multidimensional model of prestressed steel structures. Based on this model, the support vector machine and prediction model are trained using the relevant structural history data, and the safety risk level of the structure is then predicted based on the measured data. Finally, a proportional reduction model of the wheel-spoke cable truss structure is used to verify the feasibility of the proposed method. The results show that digital twin technology can achieve real-time monitoring of prestressed steel structures in use and can provide timely predictions of the safety level. This represents a new method for the safety risk assessment of prestressed steel structures.
The operation and maintenance stage of the long-span prestressed steel structure is the core link of the whole life cycle. At present, there are few studies on the change law of safety risk in the whole process of operation and maintenance, especially the research on the analysis and prediction of the change law of safety risk in the whole process of structural operation and maintenance by effectively using the abundant monitoring data and relevant safety risk information in the operation and maintenance stage, which also affects the prestressed steel, which also affects the efficiency of judgment and control decision-making of operation and maintenance safety state of prestressed steel structure. Taking the spoke-type cable truss as an example, this paper proposes a new concept of integrating the digital twin model (DTM) with steel structure operation and maintenance safety. Through the combination of real physical space dimensions and digital virtual space dimensions, it is based on a hypothetical analysis model. In the above, a theoretical framework is proposed, and a case analysis of a prestressed steel structure is carried out from big data, and the feasibility of applying this method in the prestress loss and uneven rain and snow load conditions is evaluated. This method can provide guidance for operation and maintenance management and formulate strategies in time.
Prefabricated construction hoisting has one of the highest rates of fatalities and injuries compared to other construction processes, despite technological advancements and implementations of safety initiatives. Current safety risk management frameworks lack tools that are able to process in-situ data efficiently and predict risk in advance, which makes it difficult to guarantee the safety of hoisting. Thus, this article proposed an intelligent safety risk prediction framework of prefabricated construction hoisting. It can predict the hoisting risk in real-time and investigate the spatial-temporal evolution law of the risk. Firstly, the multi-dimensional and multi-scale Digital Twin model is built by collecting the hoisting information. Secondly, a Digital Twin-Support Vector Machine (DT-SVM) algorithm is proposed to process the data stored in the virtual model and collected on the site. A case study of a prefabricated construction project reveals its prediction function and deduces the spatial-temporal evolution law of hoisting risk. The proposed method has made advancements in improving the safety management level of prefabricated hoisting. Moreover, the proposed method is able to identify the deficiencies regarding digital-twin-level control methods, which can be improved towards automatic controls in future studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.