ObjectiveThe objective of this study was to examine the effects of alfalfa flavonoids on the production performance, immunity, and ruminal fermentation of dairy cows.MethodsThe experiments employed four primiparous Holstein cows fitted with ruminal cannulas, and used a 4×4 Latin square design. Cattle were fed total mixed ration supplemented with 0 (control group, Con), 20, 60, or 100 mg of alfalfa flavonoids extract (AFE) per kg of dairy cow body weight (BW).ResultsThe feed intake of the group receiving 60 mg/kg BW of AFE were significantly higher (p<0.05) than that of the group receiving 100 mg/kg BW. Milk yields and the fat, protein and lactose of milk were unaffected by AFE, while the total solids content of milk reduced (p = 0.05) linearly as AFE supplementation was increased. The somatic cell count of milk in group receiving 60 mg/kg BW of AFE was significantly lower (p<0.05) than that of the control group. Apparent total-tract digestibility of neutral detergent fiber and crude protein showed a tendency to increase (0.05
ObjectiveThe effect of flavonoids from alfalfa on the microbial flora was determined using molecular techniques of 16S ribosome deoxyribonucleic acid (rDNA) analysis.MethodsFour primiparous Holstein heifers fitted with ruminal cannulas were used in a 4×4 Latin square design and fed a total mixed ration to which alfalfa flavonoids extract (AFE) was added at the rates of 0 (A, control), 20 (B), 60 (C), or 100 (D) mg per kg of heifer BW.ResultsThe number of operational taxonomic units in heifers given higher levels of flavonoid extract (C and D) was higher than for the two other treatments. The Shannon, Ace, and Chao indices for treatment C were significantly higher than for the other treatments (p<0.05). The number of phyla and genera increased linearly with increasing dietary supplementation of AFE (p<0.05). The principal co-ordinates analysis plot showed substantial differences in the microbial flora for the four treatments. The microbial flora in treatment A was similar to that in B, C, and D were similar by the weighted analysis. The richness of Tenericutes at the phylum level tended to increase with increasing AFE (p = 0.10). The proportion of Euryarchaeota at the phylum level increased linearly, whereas the proportion of Fusobacteria decreased linearly with increasing AFE supplementation (p = 0.04). The percentage of Mogibacterium, Pyramidobacter, and Asteroleplasma at the genus level decreased linearly with increasing AFE (p<0.05). The abundance of Spirochaeta, Succinivibrio, and Suttonella at the genus level tended to decrease linearly with increasing AFE (0.05
The establishment of a method for the removal of abundant proteins (APs) and enrichment of lowabundance proteins (LAPs) might contribute to further studies on the physiological functions of LAPs in animals and humans without the influence of APs. The aim of our study was to investigate the effect of ultrasonic treatment on the removal of APs and enrichment of LAPs in defatted soybean meal using isopropanol. The optimal isopropanol concentration for the removal APs was initially shown to be 50% without ultrasonic treatment. The highest protein concentration was achieved at 50% isopropanol concentration with 1 h of total extraction time (ultrasonic treatment and water-bath vibrating) and when the sample was treated with ultrasound at 400 W for 10 min. Under these conditions, the protein concentration increased by 26.42% when compared to the control (no ultrasonic treatment). Furthermore, no b-conglycinin and glycinin was detected by sodium dodecyl sulphateÀpolyacrylamide gel electrophoresis and mass spectrometry.
The aim of this study was to optimize the conditions for the extraction of low-abundance proteins (LAPs) and the removal of abundant proteins (APs; β-conglycinin and glycinin) from soybean meal. Single factor and orthogonal experiments were designed to determine the effects of four factors (isopropanol concentration, total extraction time, ultrasonic power, and ultrasonic time) on protein concentration in isopropanol extracts. Proteins in the isopropanol supernatant and the cold acetone precipitate of isopropanol were identified by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS). The results showed that the optimal conditions were 50% isopropanol, ultrasonic pretreatment for 15 min at 350 W, and a total extraction time of 1 h. Under these conditions, the protein concentration in the isopropanol extracts reached 0.8081 g/L. Many LAPs were detected, including β-amylase, soybean agglutinin, soybean trypsin inhibitor, fumarylacetoacetase-like, phospholipase D alpha 1-like, oleosin, and even some unknown soybean proteins. The soybean APs (β-conglycinin and glycinin) were not found. The method may be useful for discovering new soybean proteins and extracting enough LAPs of soybean to allow further studies of their physiological effects on animals without the influence of APs.
Primary bovine mammary epithelial cells are not ideal models for long-term studies, because primary cells undergo a limited number of proliferations in vitro and enter into a growth-arrest stage called cell replicative senescence; we therefore must establish the immortalized bovine mammary epithelial cells (BMECs) in vitro. More importantly, the mechanisms of the relationship between immortalized and apoptotic cell remain unknown in BMECs. We therefore sought to elucidate the mechanisms of which immortalized cells escape the pathway of apoptotic signal. These cells were successfully immortalized without any signs of senescence. The maximum number of BMEC and E6E7 immortalized cells were reached after 6 d of culture. At this point, there were significantly more E6E7 immortalized cells than primary BMECs (P < 0.01). The population-doubling times of the E6E7 and SV40T immortalized cells were lowest at 48 and 72 h. We failed to detect the expression of the epithelial cell marker E-cadherin in BMECs; however, immortalized cells had low expression of E-cadherin. The expression of β-catenin was markedly expressed in immortalized cells than in BMECs (P < 0.01). Caspase-3, caspase-9, and poly ADP-ribose polymerase (PARP) were detected; however, the cleavage of caspase-3 and PARP was not observed. Our data demonstrate that the expressions of caspase-9, caspase-3, and PARP are not sufficient for the apoptosis of immortalized cells and suggest that E-cadherin and β-catenin might be an important indicator of the development of cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.